Research Article
BibTex RIS Cite
Year 2019, Volume: 48 Issue: 4, 1131 - 1136, 08.08.2019

Abstract

References

  • [1] H. Matsumura, Commutative Ring Theory, Cambridge University Press, 1986.
  • [2] S. McAdam, Asymptotic Prime Divisors, Lecture Notes in Math. 1023, Springer- Verlag, New York, 1983.
  • [3] S. McAdam, Quintasymptotic primes and four results of Schenzel, J. Pure Appl. Algebra 47, 283–298, 1987.
  • [4] S. McAdam and L. J. Ratliff Jr., On the asymptotic cograde of an ideal, J. Algebra 87, 36–52, 1984.
  • [5] M. Nagata, Local Rings, Interscience, New York, 1961.
  • [6] R. Naghipour, Locally unmixed modules and ideal topologes, J. Algebra 236, 768–777, 2001.
  • [7] D.G. Northcott and D. Rees,Reductions of ideals in local rings, Proc. Cambridge Philos. Soc. 50, 145–158, 1954.
  • [8] L.J. Ratliff Jr., Asymptotic sequences, J. Algebra 85, 337–360, 1983.
  • [9] L.J. Ratliff Jr., On asymptotic prime divisors, Pacific J. Math. 111, 395–413, 1984.
  • [10] L.J. Ratliff Jr., Asymptotic prime divisors and integral extension rings, J. Algebra 95, 409–431, 1985.
  • [11] D. Rees, A note on analytically unramified local rings, J. London Math. Soc. 36, 24–28, 1961.
  • [12] J.K. Verma, On ideals whose adic and symbolic topologies are linearly equivalent, J. Pure Appl. Algebra 47, 205–212, 1987.

Linearly equivalent topologies and locally quasi-unmixed rings

Year 2019, Volume: 48 Issue: 4, 1131 - 1136, 08.08.2019

Abstract

Let $\bar{I}$ denote the integral closure of an ideal in a  Noetherian ring $R$. The main result of this paper asserts that $R$  is locally quasi-unmixed if and only if, the topologies defined by $\overline{I^n}$  and $I^{\langle n\rangle}$, $\ n\geq 1$,  are equivalent. In addition, some results about the behavior of linearly equivalent  topologies of ideals under various ring homomorphisms are included.

References

  • [1] H. Matsumura, Commutative Ring Theory, Cambridge University Press, 1986.
  • [2] S. McAdam, Asymptotic Prime Divisors, Lecture Notes in Math. 1023, Springer- Verlag, New York, 1983.
  • [3] S. McAdam, Quintasymptotic primes and four results of Schenzel, J. Pure Appl. Algebra 47, 283–298, 1987.
  • [4] S. McAdam and L. J. Ratliff Jr., On the asymptotic cograde of an ideal, J. Algebra 87, 36–52, 1984.
  • [5] M. Nagata, Local Rings, Interscience, New York, 1961.
  • [6] R. Naghipour, Locally unmixed modules and ideal topologes, J. Algebra 236, 768–777, 2001.
  • [7] D.G. Northcott and D. Rees,Reductions of ideals in local rings, Proc. Cambridge Philos. Soc. 50, 145–158, 1954.
  • [8] L.J. Ratliff Jr., Asymptotic sequences, J. Algebra 85, 337–360, 1983.
  • [9] L.J. Ratliff Jr., On asymptotic prime divisors, Pacific J. Math. 111, 395–413, 1984.
  • [10] L.J. Ratliff Jr., Asymptotic prime divisors and integral extension rings, J. Algebra 95, 409–431, 1985.
  • [11] D. Rees, A note on analytically unramified local rings, J. London Math. Soc. 36, 24–28, 1961.
  • [12] J.K. Verma, On ideals whose adic and symbolic topologies are linearly equivalent, J. Pure Appl. Algebra 47, 205–212, 1987.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Adeleh Azari This is me 0000-0001-5251-9216

Simin Mollamahmoudi This is me 0000-0002-0170-630X

Reza Naghipour This is me 0000-0003-2781-7611

Publication Date August 8, 2019
Published in Issue Year 2019 Volume: 48 Issue: 4

Cite

APA Azari, A., Mollamahmoudi, S., & Naghipour, R. (2019). Linearly equivalent topologies and locally quasi-unmixed rings. Hacettepe Journal of Mathematics and Statistics, 48(4), 1131-1136.
AMA Azari A, Mollamahmoudi S, Naghipour R. Linearly equivalent topologies and locally quasi-unmixed rings. Hacettepe Journal of Mathematics and Statistics. August 2019;48(4):1131-1136.
Chicago Azari, Adeleh, Simin Mollamahmoudi, and Reza Naghipour. “Linearly Equivalent Topologies and Locally Quasi-Unmixed Rings”. Hacettepe Journal of Mathematics and Statistics 48, no. 4 (August 2019): 1131-36.
EndNote Azari A, Mollamahmoudi S, Naghipour R (August 1, 2019) Linearly equivalent topologies and locally quasi-unmixed rings. Hacettepe Journal of Mathematics and Statistics 48 4 1131–1136.
IEEE A. Azari, S. Mollamahmoudi, and R. Naghipour, “Linearly equivalent topologies and locally quasi-unmixed rings”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 4, pp. 1131–1136, 2019.
ISNAD Azari, Adeleh et al. “Linearly Equivalent Topologies and Locally Quasi-Unmixed Rings”. Hacettepe Journal of Mathematics and Statistics 48/4 (August 2019), 1131-1136.
JAMA Azari A, Mollamahmoudi S, Naghipour R. Linearly equivalent topologies and locally quasi-unmixed rings. Hacettepe Journal of Mathematics and Statistics. 2019;48:1131–1136.
MLA Azari, Adeleh et al. “Linearly Equivalent Topologies and Locally Quasi-Unmixed Rings”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 4, 2019, pp. 1131-6.
Vancouver Azari A, Mollamahmoudi S, Naghipour R. Linearly equivalent topologies and locally quasi-unmixed rings. Hacettepe Journal of Mathematics and Statistics. 2019;48(4):1131-6.