Year 2019,
Volume: 48 Issue: 6, 1653 - 1666, 08.12.2019
Artur Piękosz
Eliza Wajch
References
-
[1] J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories, the Joy
of Cats, Wiley, New York, 1990.
-
[2] A. Appert and K. Fan, Espaces Topologiques Intermédiaires, Act. Sci. et Ind. 1121,
Hermann, Paris, 1951.
-
[3] E. Colebunders and R. Lowen, Metrically generated theories, Proc. Amer. Math. Soc.
133 (5), 1547–1556, 2004.
-
[4] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (4),
351–357, 2002.
-
[5] H. Delfs and M. Knebusch, Locally Semialgebraic Spaces, in: Lecture Notes in Math.
1173, Springer, Berlin-Heidelberg, 1985.
-
[6] M.J. Edmundo and L. Prelli, Sheaves on T-topologies, J. Math. Soc. Japan, 68 (1),
347–381, 2016.
-
[7] P. Fletcher and W.F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York,
1982.
-
[8] I. Garrido and A.S. Meroño, Uniformly metrizable bornologies, J. Convex Anal. 20
(1), 285–299, 2013.
-
[9] H. Herrlich, Axiom of Choice, Springer-Verlag, Berlin-Heidelberg, 2006.
-
[10] D. Hofmann, G.J. Seal and W. Tholen, Monoidal Topology, A Categorical Approach
to Order, Metric, and Topology, Cambridge University Press, Cambridge, 2014.
-
[11] H. Hogbe-Nlend, Bornologies and Functional Analysis, North-Holland, Amsterdam,
1977.
-
[12] S.T. Hu, Boundedness in a topological space, J. Math. Pures Appl. 28, 287–320, 1949.
-
[13] J.C. Kelly, Bitopological spaces, Proc. Lond. Math. Soc. 13, 71–89, 1963.
-
[14] M. Knebusch, Weakly Semialgebraic Spaces, in: Lecture Notes in Math. 1367,
Springer-Verlag, New York, 1989.
-
[15] K. Kunen, The Foundations of Mathematics, Individual Authors and College Publications,
London, 2009.
-
[16] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, Berlin-
Heidelberg, 1971.
-
[17] A. Piękosz, On generalized topological spaces I, Ann. Polon. Math. 107 (3), 217–241,
2013.
-
[18] A. Piękosz, On generalized topological spaces II, Ann. Polon. Math. 108 (2), 185–214,
2013.
-
[19] A. Piękosz, O-minimal homotopy and generalized (co)homology, Rocky Mountain J.
Math. 43 (2), 573–617, 2013.
-
[20] A. Piękosz and E. Wajch, Compactness and compactifications in generalized topology,
Topology Appl. 194, 241–268, 2015.
-
[21] A. Piękosz, and E. Wajch, Quasi-Metrizability of Bornological Biuniverses in ZF, J.
Convex Anal. 22 (4), 1041–1060, 2015.
-
[22] S. Salbany, Bitopological spaces, compactifications and completions, in: Math. Monographs,
Univ. of Cape Town, Cape Town, 1974.
-
[23] T. Vroegrijk, Pointwise bornological spaces, Topology Appl. 156, 2019–2027, 2009.
Bornological quasi-metrizability in generalized topology
Year 2019,
Volume: 48 Issue: 6, 1653 - 1666, 08.12.2019
Artur Piękosz
Eliza Wajch
Abstract
A concept of quasi-metrizability with respect to a bornology of a generalized topological space in the sense of Delfs and Knebusch is introduced. Quasi-metrization theorems for generalized bornological universes are deduced. A uniform quasi-metrizability with respect to a bornology is studied. The class of locally small spaces is considered and a possibly larger class of weakly locally small spaces is defined. The proofs and numerous examples are given in ZF. An example of a weakly locally small space which is not locally small is constructed under ZF+CC. Several categories, relevant to generalized bornological universes, are defined and shown to be topological constructs.
References
-
[1] J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories, the Joy
of Cats, Wiley, New York, 1990.
-
[2] A. Appert and K. Fan, Espaces Topologiques Intermédiaires, Act. Sci. et Ind. 1121,
Hermann, Paris, 1951.
-
[3] E. Colebunders and R. Lowen, Metrically generated theories, Proc. Amer. Math. Soc.
133 (5), 1547–1556, 2004.
-
[4] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (4),
351–357, 2002.
-
[5] H. Delfs and M. Knebusch, Locally Semialgebraic Spaces, in: Lecture Notes in Math.
1173, Springer, Berlin-Heidelberg, 1985.
-
[6] M.J. Edmundo and L. Prelli, Sheaves on T-topologies, J. Math. Soc. Japan, 68 (1),
347–381, 2016.
-
[7] P. Fletcher and W.F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York,
1982.
-
[8] I. Garrido and A.S. Meroño, Uniformly metrizable bornologies, J. Convex Anal. 20
(1), 285–299, 2013.
-
[9] H. Herrlich, Axiom of Choice, Springer-Verlag, Berlin-Heidelberg, 2006.
-
[10] D. Hofmann, G.J. Seal and W. Tholen, Monoidal Topology, A Categorical Approach
to Order, Metric, and Topology, Cambridge University Press, Cambridge, 2014.
-
[11] H. Hogbe-Nlend, Bornologies and Functional Analysis, North-Holland, Amsterdam,
1977.
-
[12] S.T. Hu, Boundedness in a topological space, J. Math. Pures Appl. 28, 287–320, 1949.
-
[13] J.C. Kelly, Bitopological spaces, Proc. Lond. Math. Soc. 13, 71–89, 1963.
-
[14] M. Knebusch, Weakly Semialgebraic Spaces, in: Lecture Notes in Math. 1367,
Springer-Verlag, New York, 1989.
-
[15] K. Kunen, The Foundations of Mathematics, Individual Authors and College Publications,
London, 2009.
-
[16] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, Berlin-
Heidelberg, 1971.
-
[17] A. Piękosz, On generalized topological spaces I, Ann. Polon. Math. 107 (3), 217–241,
2013.
-
[18] A. Piękosz, On generalized topological spaces II, Ann. Polon. Math. 108 (2), 185–214,
2013.
-
[19] A. Piękosz, O-minimal homotopy and generalized (co)homology, Rocky Mountain J.
Math. 43 (2), 573–617, 2013.
-
[20] A. Piękosz and E. Wajch, Compactness and compactifications in generalized topology,
Topology Appl. 194, 241–268, 2015.
-
[21] A. Piękosz, and E. Wajch, Quasi-Metrizability of Bornological Biuniverses in ZF, J.
Convex Anal. 22 (4), 1041–1060, 2015.
-
[22] S. Salbany, Bitopological spaces, compactifications and completions, in: Math. Monographs,
Univ. of Cape Town, Cape Town, 1974.
-
[23] T. Vroegrijk, Pointwise bornological spaces, Topology Appl. 156, 2019–2027, 2009.