Research Article
BibTex RIS Cite
Year 2019, Volume: 48 Issue: 6, 1653 - 1666, 08.12.2019

Abstract

References

  • [1] J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories, the Joy of Cats, Wiley, New York, 1990.
  • [2] A. Appert and K. Fan, Espaces Topologiques Intermédiaires, Act. Sci. et Ind. 1121, Hermann, Paris, 1951.
  • [3] E. Colebunders and R. Lowen, Metrically generated theories, Proc. Amer. Math. Soc. 133 (5), 1547–1556, 2004.
  • [4] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (4), 351–357, 2002.
  • [5] H. Delfs and M. Knebusch, Locally Semialgebraic Spaces, in: Lecture Notes in Math. 1173, Springer, Berlin-Heidelberg, 1985.
  • [6] M.J. Edmundo and L. Prelli, Sheaves on T-topologies, J. Math. Soc. Japan, 68 (1), 347–381, 2016.
  • [7] P. Fletcher and W.F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.
  • [8] I. Garrido and A.S. Meroño, Uniformly metrizable bornologies, J. Convex Anal. 20 (1), 285–299, 2013.
  • [9] H. Herrlich, Axiom of Choice, Springer-Verlag, Berlin-Heidelberg, 2006.
  • [10] D. Hofmann, G.J. Seal and W. Tholen, Monoidal Topology, A Categorical Approach to Order, Metric, and Topology, Cambridge University Press, Cambridge, 2014.
  • [11] H. Hogbe-Nlend, Bornologies and Functional Analysis, North-Holland, Amsterdam, 1977.
  • [12] S.T. Hu, Boundedness in a topological space, J. Math. Pures Appl. 28, 287–320, 1949.
  • [13] J.C. Kelly, Bitopological spaces, Proc. Lond. Math. Soc. 13, 71–89, 1963.
  • [14] M. Knebusch, Weakly Semialgebraic Spaces, in: Lecture Notes in Math. 1367, Springer-Verlag, New York, 1989.
  • [15] K. Kunen, The Foundations of Mathematics, Individual Authors and College Publications, London, 2009.
  • [16] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, Berlin- Heidelberg, 1971.
  • [17] A. Piękosz, On generalized topological spaces I, Ann. Polon. Math. 107 (3), 217–241, 2013.
  • [18] A. Piękosz, On generalized topological spaces II, Ann. Polon. Math. 108 (2), 185–214, 2013.
  • [19] A. Piękosz, O-minimal homotopy and generalized (co)homology, Rocky Mountain J. Math. 43 (2), 573–617, 2013.
  • [20] A. Piękosz and E. Wajch, Compactness and compactifications in generalized topology, Topology Appl. 194, 241–268, 2015.
  • [21] A. Piękosz, and E. Wajch, Quasi-Metrizability of Bornological Biuniverses in ZF, J. Convex Anal. 22 (4), 1041–1060, 2015.
  • [22] S. Salbany, Bitopological spaces, compactifications and completions, in: Math. Monographs, Univ. of Cape Town, Cape Town, 1974.
  • [23] T. Vroegrijk, Pointwise bornological spaces, Topology Appl. 156, 2019–2027, 2009.

Bornological quasi-metrizability in generalized topology

Year 2019, Volume: 48 Issue: 6, 1653 - 1666, 08.12.2019

Abstract

A concept of quasi-metrizability with respect to a bornology of a generalized topological space in the sense of Delfs and Knebusch is introduced. Quasi-metrization theorems for generalized bornological universes are deduced. A uniform quasi-metrizability with respect to a bornology is studied. The class of locally small spaces is considered and a possibly larger class of weakly locally small spaces is defined. The proofs and numerous examples are given in ZF. An example of a weakly locally small space which is not locally small is constructed under ZF+CC. Several categories, relevant to generalized bornological universes, are defined and shown to be topological constructs.

References

  • [1] J. Adámek, H. Herrlich and G.E. Strecker, Abstract and Concrete Categories, the Joy of Cats, Wiley, New York, 1990.
  • [2] A. Appert and K. Fan, Espaces Topologiques Intermédiaires, Act. Sci. et Ind. 1121, Hermann, Paris, 1951.
  • [3] E. Colebunders and R. Lowen, Metrically generated theories, Proc. Amer. Math. Soc. 133 (5), 1547–1556, 2004.
  • [4] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (4), 351–357, 2002.
  • [5] H. Delfs and M. Knebusch, Locally Semialgebraic Spaces, in: Lecture Notes in Math. 1173, Springer, Berlin-Heidelberg, 1985.
  • [6] M.J. Edmundo and L. Prelli, Sheaves on T-topologies, J. Math. Soc. Japan, 68 (1), 347–381, 2016.
  • [7] P. Fletcher and W.F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.
  • [8] I. Garrido and A.S. Meroño, Uniformly metrizable bornologies, J. Convex Anal. 20 (1), 285–299, 2013.
  • [9] H. Herrlich, Axiom of Choice, Springer-Verlag, Berlin-Heidelberg, 2006.
  • [10] D. Hofmann, G.J. Seal and W. Tholen, Monoidal Topology, A Categorical Approach to Order, Metric, and Topology, Cambridge University Press, Cambridge, 2014.
  • [11] H. Hogbe-Nlend, Bornologies and Functional Analysis, North-Holland, Amsterdam, 1977.
  • [12] S.T. Hu, Boundedness in a topological space, J. Math. Pures Appl. 28, 287–320, 1949.
  • [13] J.C. Kelly, Bitopological spaces, Proc. Lond. Math. Soc. 13, 71–89, 1963.
  • [14] M. Knebusch, Weakly Semialgebraic Spaces, in: Lecture Notes in Math. 1367, Springer-Verlag, New York, 1989.
  • [15] K. Kunen, The Foundations of Mathematics, Individual Authors and College Publications, London, 2009.
  • [16] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, Berlin- Heidelberg, 1971.
  • [17] A. Piękosz, On generalized topological spaces I, Ann. Polon. Math. 107 (3), 217–241, 2013.
  • [18] A. Piękosz, On generalized topological spaces II, Ann. Polon. Math. 108 (2), 185–214, 2013.
  • [19] A. Piękosz, O-minimal homotopy and generalized (co)homology, Rocky Mountain J. Math. 43 (2), 573–617, 2013.
  • [20] A. Piękosz and E. Wajch, Compactness and compactifications in generalized topology, Topology Appl. 194, 241–268, 2015.
  • [21] A. Piękosz, and E. Wajch, Quasi-Metrizability of Bornological Biuniverses in ZF, J. Convex Anal. 22 (4), 1041–1060, 2015.
  • [22] S. Salbany, Bitopological spaces, compactifications and completions, in: Math. Monographs, Univ. of Cape Town, Cape Town, 1974.
  • [23] T. Vroegrijk, Pointwise bornological spaces, Topology Appl. 156, 2019–2027, 2009.
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Artur Piękosz This is me 0000-0002-7515-2418

Eliza Wajch This is me 0000-0003-1864-2303

Publication Date December 8, 2019
Published in Issue Year 2019 Volume: 48 Issue: 6

Cite

APA Piękosz, A., & Wajch, E. (2019). Bornological quasi-metrizability in generalized topology. Hacettepe Journal of Mathematics and Statistics, 48(6), 1653-1666.
AMA Piękosz A, Wajch E. Bornological quasi-metrizability in generalized topology. Hacettepe Journal of Mathematics and Statistics. December 2019;48(6):1653-1666.
Chicago Piękosz, Artur, and Eliza Wajch. “Bornological Quasi-Metrizability in Generalized Topology”. Hacettepe Journal of Mathematics and Statistics 48, no. 6 (December 2019): 1653-66.
EndNote Piękosz A, Wajch E (December 1, 2019) Bornological quasi-metrizability in generalized topology. Hacettepe Journal of Mathematics and Statistics 48 6 1653–1666.
IEEE A. Piękosz and E. Wajch, “Bornological quasi-metrizability in generalized topology”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 6, pp. 1653–1666, 2019.
ISNAD Piękosz, Artur - Wajch, Eliza. “Bornological Quasi-Metrizability in Generalized Topology”. Hacettepe Journal of Mathematics and Statistics 48/6 (December 2019), 1653-1666.
JAMA Piękosz A, Wajch E. Bornological quasi-metrizability in generalized topology. Hacettepe Journal of Mathematics and Statistics. 2019;48:1653–1666.
MLA Piękosz, Artur and Eliza Wajch. “Bornological Quasi-Metrizability in Generalized Topology”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 6, 2019, pp. 1653-66.
Vancouver Piękosz A, Wajch E. Bornological quasi-metrizability in generalized topology. Hacettepe Journal of Mathematics and Statistics. 2019;48(6):1653-66.