Year 2020,
Volume: 49 Issue: 1, 254 - 272, 06.02.2020
Ali Rezaei Aliabad
Mehdi Badie
,
Sajad Nazari
References
- [1] A.R. Aliabad and M. Badie, Fixed-place ideals in commutative rings, Comment. Math.
Univ. Carolin. 54 (1), 53–68, 2013.
- [2] A.R. Aliabad and M. Badie, On Bourbaki associated prime divisors of an ideal,
Quaest. Math. 42 (4), 479-500, 2019.
- [3] A.R. Aliabad and R. Mohamadian, On $sz^{\circ}$-ideals in polynomial rings, Comm. Algebra
39 (2) (2011), 701–717, 2011.
- [4] A.R. Aliabad, R. Mohamadian, and S. Nazari, On regular ideals in reduced rings,
Filomat 31 (12), 3715–3726, 2017.
- [5] A.R. Aliabad and S. Nazari, On the spectrum of a commutative ring via C(X), (to
appear).
- [6] A.R. Aliabad, A. Taherifar, and N. Tayarzadeh, $\alpha$-Baer rings and some related concepts
via C(X), Quaest. Math. 39 (3), 401–419, 2016.
- [7] G. Artico, U. Marconi, and R. Moresco, A subspace of Spec(A) and its connexions
with the maximal ring of quotients, Rend. Sem. Mat. Univ., Padova 64, 93–107, 1981.
- [8] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, vol. 2,
Addison-Wesley Reading, 1969.
- [9] F. Azarpanah, O.A.S. Karamzadeh, and A.R. Aliabad, On $z^{\circ}$-ideals in C(X), Fund.
Math. 160 (1), 15-25,1999.
- [10] F. Azarpanah, O.A.S. Karamzadeh, and A.R. Aliabad, On ideals consisting entirely
of zero-divisors, Comm. Algebra 28 (2), 1061–1073, 2000.
- [11] T.S. Blyth, Lattices and Ordered Algebraic Structures, Springer-Verlag, London, 2005.
- [12] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand Reinhold,
New York, 1960.
- [13] G. Grätzer, General Lattice Theory, Birkhäuser, Basel, 1998.
- [14] M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative
ring, Trans. Amer. Math. Soc. 115, 110–130, 1965.
- [15] C.B. Huijsmans and B. De Patger, On z-ideals and d-ideals in Riesz spaces. I, Indag.
Math. (Proceeding) A 83 (2), 183–195, 1980.
- [16] D.G. Johnson and M. Mandelker, Functions with pseudocompact support, Topology
Appl. 3 (4), 331–338, 1973.
- [17] J. Kist, Minimal prime ideals in commutative semigroups, Proc. Lond. Math. Soc. 3
(1), 31–50, 1963.
- [18] G. Mason, z-ideals and prime ideals, J. Algebra 26 (2), 280–297, 1973.
- [19] G. Mason, Prime ideals and quotient rings of reduced rings, Math. Jpn. 34 (6), 941–
956, 1989.
- [20] Y. Quentel, Sur la compacité du spectre minimal d’un anneau, Bull. Soc. Math. France
99, 265–272, 1971.
- [21] R.Y. Sharp, Steps in Commutative Algebra, Cambridge university press, London,
1990.
- [22] S. Willard, General Topology, Addison Wesley, Reading Mass., New York, 1970.
An extension of $z$-ideals and $z^\circ$-ideals
Year 2020,
Volume: 49 Issue: 1, 254 - 272, 06.02.2020
Ali Rezaei Aliabad
Mehdi Badie
,
Sajad Nazari
Abstract
Let $R$ be a commutative ring, $Y\subseteq Spec(R)$ and $ h_Y(S)=\{P\in Y:S\subseteq P \}$, for every $S\subseteq R$. An ideal $I$ is said to be an $\mathcal{H}_Y$-ideal whenever it follows from $h_Y(a)\subseteq h_Y(b)$ and $a\in I$ that $b\in I$. A strong $\mathcal{H}_Y$-ideal is defined in the same way by replacing an arbitrary finite set $F$ instead of the element $a$. In this paper these two classes of ideals (which are based on the spectrum of the ring $R$ and are a generalization of the well-known concepts semiprime ideal, z-ideal, $z^{\circ}$-ideal (d-ideal), sz-ideal and $sz^{\circ}$-ideal ($\xi$-ideal)) are studied. We show that the most important results about these concepts, Zariski topology", annihilator" and etc can be extended in such a way that the corresponding consequences seems to be trivial and useless. This comprehensive look helps to recognize the resemblances and differences of known concepts better.
References
- [1] A.R. Aliabad and M. Badie, Fixed-place ideals in commutative rings, Comment. Math.
Univ. Carolin. 54 (1), 53–68, 2013.
- [2] A.R. Aliabad and M. Badie, On Bourbaki associated prime divisors of an ideal,
Quaest. Math. 42 (4), 479-500, 2019.
- [3] A.R. Aliabad and R. Mohamadian, On $sz^{\circ}$-ideals in polynomial rings, Comm. Algebra
39 (2) (2011), 701–717, 2011.
- [4] A.R. Aliabad, R. Mohamadian, and S. Nazari, On regular ideals in reduced rings,
Filomat 31 (12), 3715–3726, 2017.
- [5] A.R. Aliabad and S. Nazari, On the spectrum of a commutative ring via C(X), (to
appear).
- [6] A.R. Aliabad, A. Taherifar, and N. Tayarzadeh, $\alpha$-Baer rings and some related concepts
via C(X), Quaest. Math. 39 (3), 401–419, 2016.
- [7] G. Artico, U. Marconi, and R. Moresco, A subspace of Spec(A) and its connexions
with the maximal ring of quotients, Rend. Sem. Mat. Univ., Padova 64, 93–107, 1981.
- [8] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, vol. 2,
Addison-Wesley Reading, 1969.
- [9] F. Azarpanah, O.A.S. Karamzadeh, and A.R. Aliabad, On $z^{\circ}$-ideals in C(X), Fund.
Math. 160 (1), 15-25,1999.
- [10] F. Azarpanah, O.A.S. Karamzadeh, and A.R. Aliabad, On ideals consisting entirely
of zero-divisors, Comm. Algebra 28 (2), 1061–1073, 2000.
- [11] T.S. Blyth, Lattices and Ordered Algebraic Structures, Springer-Verlag, London, 2005.
- [12] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand Reinhold,
New York, 1960.
- [13] G. Grätzer, General Lattice Theory, Birkhäuser, Basel, 1998.
- [14] M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative
ring, Trans. Amer. Math. Soc. 115, 110–130, 1965.
- [15] C.B. Huijsmans and B. De Patger, On z-ideals and d-ideals in Riesz spaces. I, Indag.
Math. (Proceeding) A 83 (2), 183–195, 1980.
- [16] D.G. Johnson and M. Mandelker, Functions with pseudocompact support, Topology
Appl. 3 (4), 331–338, 1973.
- [17] J. Kist, Minimal prime ideals in commutative semigroups, Proc. Lond. Math. Soc. 3
(1), 31–50, 1963.
- [18] G. Mason, z-ideals and prime ideals, J. Algebra 26 (2), 280–297, 1973.
- [19] G. Mason, Prime ideals and quotient rings of reduced rings, Math. Jpn. 34 (6), 941–
956, 1989.
- [20] Y. Quentel, Sur la compacité du spectre minimal d’un anneau, Bull. Soc. Math. France
99, 265–272, 1971.
- [21] R.Y. Sharp, Steps in Commutative Algebra, Cambridge university press, London,
1990.
- [22] S. Willard, General Topology, Addison Wesley, Reading Mass., New York, 1970.