Year 2020, Volume 49 , Issue 1, Pages 254 - 272 2020-02-06

An extension of $z$-ideals and $z^\circ$-ideals

Ali Rezaei ALİABAD [1] , Mehdi BADİE [2] , Sajad NAZARİ [3]


Let $R$ be a commutative ring, $Y\subseteq Spec(R)$ and $ h_Y(S)=\{P\in Y:S\subseteq P \}$, for every $S\subseteq R$. An ideal $I$ is said to be an $\mathcal{H}_Y$-ideal whenever it follows from $h_Y(a)\subseteq h_Y(b)$ and $a\in I$ that $b\in I$. A strong  $\mathcal{H}_Y$-ideal is defined in the same way by replacing an arbitrary finite set $F$ instead of the element $a$. In this paper these two classes of ideals (which are based on the spectrum of the ring $R$ and are a generalization of the well-known concepts semiprime ideal, z-ideal, $z^{\circ}$-ideal (d-ideal), sz-ideal and $sz^{\circ}$-ideal ($\xi$-ideal)) are studied. We show that the most important results about these concepts, Zariski topology", annihilator" and etc can be extended in such a way that the corresponding consequences seems to be trivial and useless. This comprehensive look helps to recognize the resemblances and differences of known concepts better.
$z$-ideal, $z^\circ$-ideal, strong $z$-ideal, strong $z^\circ$-ideal, prime ideal, semiprime ideal, Zariski topology, Hilbert ideal, rings of continuous functions
  • [1] A.R. Aliabad and M. Badie, Fixed-place ideals in commutative rings, Comment. Math. Univ. Carolin. 54 (1), 53–68, 2013.
  • [2] A.R. Aliabad and M. Badie, On Bourbaki associated prime divisors of an ideal, Quaest. Math. 42 (4), 479-500, 2019.
  • [3] A.R. Aliabad and R. Mohamadian, On $sz^{\circ}$-ideals in polynomial rings, Comm. Algebra 39 (2) (2011), 701–717, 2011.
  • [4] A.R. Aliabad, R. Mohamadian, and S. Nazari, On regular ideals in reduced rings, Filomat 31 (12), 3715–3726, 2017.
  • [5] A.R. Aliabad and S. Nazari, On the spectrum of a commutative ring via C(X), (to appear).
  • [6] A.R. Aliabad, A. Taherifar, and N. Tayarzadeh, $\alpha$-Baer rings and some related concepts via C(X), Quaest. Math. 39 (3), 401–419, 2016.
  • [7] G. Artico, U. Marconi, and R. Moresco, A subspace of Spec(A) and its connexions with the maximal ring of quotients, Rend. Sem. Mat. Univ., Padova 64, 93–107, 1981.
  • [8] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, vol. 2, Addison-Wesley Reading, 1969.
  • [9] F. Azarpanah, O.A.S. Karamzadeh, and A.R. Aliabad, On $z^{\circ}$-ideals in C(X), Fund. Math. 160 (1), 15-25,1999.
  • [10] F. Azarpanah, O.A.S. Karamzadeh, and A.R. Aliabad, On ideals consisting entirely of zero-divisors, Comm. Algebra 28 (2), 1061–1073, 2000.
  • [11] T.S. Blyth, Lattices and Ordered Algebraic Structures, Springer-Verlag, London, 2005.
  • [12] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand Reinhold, New York, 1960.
  • [13] G. Grätzer, General Lattice Theory, Birkhäuser, Basel, 1998.
  • [14] M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115, 110–130, 1965.
  • [15] C.B. Huijsmans and B. De Patger, On z-ideals and d-ideals in Riesz spaces. I, Indag. Math. (Proceeding) A 83 (2), 183–195, 1980.
  • [16] D.G. Johnson and M. Mandelker, Functions with pseudocompact support, Topology Appl. 3 (4), 331–338, 1973.
  • [17] J. Kist, Minimal prime ideals in commutative semigroups, Proc. Lond. Math. Soc. 3 (1), 31–50, 1963.
  • [18] G. Mason, z-ideals and prime ideals, J. Algebra 26 (2), 280–297, 1973.
  • [19] G. Mason, Prime ideals and quotient rings of reduced rings, Math. Jpn. 34 (6), 941– 956, 1989.
  • [20] Y. Quentel, Sur la compacité du spectre minimal d’un anneau, Bull. Soc. Math. France 99, 265–272, 1971.
  • [21] R.Y. Sharp, Steps in Commutative Algebra, Cambridge university press, London, 1990.
  • [22] S. Willard, General Topology, Addison Wesley, Reading Mass., New York, 1970.
Primary Language en
Subjects Mathematics
Journal Section Mathematics
Authors

Orcid: 0000-0003-1293-3652
Author: Ali Rezaei ALİABAD
Institution: Shahid Chamran University of Ahvaz
Country: Iran


Orcid: 0000-0003-1114-3130
Author: Mehdi BADİE (Primary Author)
Institution: Jundi-Shapur University of Technology
Country: Iran


Orcid: 0000-0002-4295-2435
Author: Sajad NAZARİ
Institution: Shahid Chamran University of Ahvaz
Country: Iran


Dates

Publication Date : February 6, 2020

Bibtex @research article { hujms455030, journal = {Hacettepe Journal of Mathematics and Statistics}, issn = {2651-477X}, eissn = {2651-477X}, address = {}, publisher = {Hacettepe University}, year = {2020}, volume = {49}, pages = {254 - 272}, doi = {10.15672/hujms.455030}, title = {An extension of \$z\$-ideals and \$z\^\\circ\$-ideals}, key = {cite}, author = {ALİABAD, Ali Rezaei and BADİE, Mehdi and NAZARİ, Sajad} }
APA ALİABAD, A , BADİE, M , NAZARİ, S . (2020). An extension of $z$-ideals and $z^\circ$-ideals. Hacettepe Journal of Mathematics and Statistics , 49 (1) , 254-272 . DOI: 10.15672/hujms.455030
MLA ALİABAD, A , BADİE, M , NAZARİ, S . "An extension of $z$-ideals and $z^\circ$-ideals". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 254-272 <https://dergipark.org.tr/en/pub/hujms/issue/52287/455030>
Chicago ALİABAD, A , BADİE, M , NAZARİ, S . "An extension of $z$-ideals and $z^\circ$-ideals". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 254-272
RIS TY - JOUR T1 - An extension of $z$-ideals and $z^\circ$-ideals AU - Ali Rezaei ALİABAD , Mehdi BADİE , Sajad NAZARİ Y1 - 2020 PY - 2020 N1 - doi: 10.15672/hujms.455030 DO - 10.15672/hujms.455030 T2 - Hacettepe Journal of Mathematics and Statistics JF - Journal JO - JOR SP - 254 EP - 272 VL - 49 IS - 1 SN - 2651-477X-2651-477X M3 - doi: 10.15672/hujms.455030 UR - https://doi.org/10.15672/hujms.455030 Y2 - 2018 ER -
EndNote %0 Hacettepe Journal of Mathematics and Statistics An extension of $z$-ideals and $z^\circ$-ideals %A Ali Rezaei ALİABAD , Mehdi BADİE , Sajad NAZARİ %T An extension of $z$-ideals and $z^\circ$-ideals %D 2020 %J Hacettepe Journal of Mathematics and Statistics %P 2651-477X-2651-477X %V 49 %N 1 %R doi: 10.15672/hujms.455030 %U 10.15672/hujms.455030
ISNAD ALİABAD, Ali Rezaei , BADİE, Mehdi , NAZARİ, Sajad . "An extension of $z$-ideals and $z^\circ$-ideals". Hacettepe Journal of Mathematics and Statistics 49 / 1 (February 2020): 254-272 . https://doi.org/10.15672/hujms.455030
AMA ALİABAD A , BADİE M , NAZARİ S . An extension of $z$-ideals and $z^\circ$-ideals. Hacettepe Journal of Mathematics and Statistics. 2020; 49(1): 254-272.
Vancouver ALİABAD A , BADİE M , NAZARİ S . An extension of $z$-ideals and $z^\circ$-ideals. Hacettepe Journal of Mathematics and Statistics. 2020; 49(1): 272-254.