The strong convergence of a proximal point algorithm in complete CAT(0) metric spaces
Year 2020,
Volume: 49 Issue: 1, 399 - 408, 06.02.2020
Mohsen Tahernia
Sirous Moradi
,
Somayeh Jafari
Abstract
In this paper, we consider a proximal point algorithm for finding zeros of maximal monotone operators in complete CAT(0) spaces. First, a necessary and sufficient condition is presented for the zero set of the operator to be nonempty. Afterwards, we prove that, under suitable conditions, the proposed algorithm converges strongly to the metric projection of some point onto the zero set of the involving maximal monotone operator.
References
- [1] P. Ahmadi and H. Khatibzadeh, On the convergence of inexact proximal point algorithm
on Hadamard manifolds, Taiwanese J. Math. 18, 419–433, 2014.
- [2] B. Ahmadi Kakavandi, Weak topologies in complete CAT(0) metric spaces, Proc.
Amer. Math. Soc. 141, 1029–1039, 2013.
- [3] B. Ahmadi Kakavandi and M. Amini, Duality and subdifierential for convex functions
on complete CAT(0) metric spaces, Nonlinear Anal. 73, 3450–3455, 2010.
- [4] M. Bacak, Convex analysis and optimization in Hadamard spaces, De Gruyter Series
in Nonlinear Analysis and Applications, 22, De Gruyter, Berlin, 2014.
- [5] I.D. Berg and I.G. Nikolaev, Quasilinearization and curvature of Alexandrov spaces,
Geom. Dedicata, 133, 195–218, 2008.
- [6] H. Br´ezis and P.L. Lions, Produits infinis de r´esolvantes, Israel J. Math. 29, 329–345,
1978.
- [7] M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, 319, Springer,
Berlin, 1999.
- [8] K.S. Brown, Buildings, Springer, New York, 1989.
- [9] D. Burago, Y. Burago and S. Ivanov, A course in metric geometry, Graduate Studies
in Mathematics, 33 American Mathematical Society, Providence, RI, 2001.
- [10] H. Dehghan and J. Rooin, Metric projection and convergence theorems for nonexpansive
mappings in Hadamard spaces, arXiv: 1410.1137v1[math.FA].
- [11] S. Dhompongsa and B. Panyanak, On △-convergence theorems in CAT(0) spaces,
Comput. Math. Appl. 56, 2572–2579, 2008.
- [12] B. Djafari Rouhani and H. Khatibzadeh, On the proximal point algorithm, J. Optim.
Theory Appl. 137, 411–417, 2008.
- [13] B. Djafari Rouhani and S. Moradi, Strong convergence of two proximal point algorithms
with possible unbounded error sequences, J. Optim.Theory Appl. 172, 222–235,
2017.
- [14] R. Esp´inola and A. Fern´andez-Le´on, CAT(k)-spaces, weak convergence and fixed
points, J. Math. Anal. Appl. 353, 410–427, 2009.
- [15] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive
mappings. Monographs and Textbooks in Pure and Applied Mathematics, Marcel
Dekker Inc., New York, 1984.
- [16] M. Gromov and S.M. Bates, Metric structures for Riemannian and non-Riemannian
spaces, Progress in Mathematics, 152, eds. J. Lafontaine and P. Pansu) (Birkh¨auser,
Boston, 1999, with appendices by M. Katz, P. Pansu and S. Semmes.
- [17] O. G¨uler, On the convergence of the proximal point algorithm for convex minimization,
SIAM J. Control Optim. 29, 403–419, 1991.
- [18] M.T. Heydari and S. Ranjbar, Halpern-type proximal point algorithm in complete
CAT(0) metric spaces, An. St. Univ. Ovidius Constanta. 24 (3), 141–159, 2016.
- [19] J. Jöst, Nonpositive curvature: geometric and analytic aspects, Lectures in Mathematics,
Birkhauser, Basel, 1997.
- [20] H. Khatibzadeh and S. Ranjbar, Monotone operators and the proximal point algorithm
in complete CAT(0) metric spaces, J. Aust. Math. Soc. 103 (1), 70–90, 2017.
- [21] W.A. Kirk, Fixed point theorems in CAT(0) spaces and $\mathbb{R}$-trees, J. Fixed Point Theory
Appl. 4, 309–316, 2004.
- [22] W.A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear
Anal. (TMA) 68, 3689–3696, 2008.
- [23] C. Li, G. Lopez and V. Martin-Marquez, Monotone vector fields and the proximal
point algorithm on Hadamard manifolds, J. London Math. Soc. 79 (2), 663–683,
2009.
- [24] T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60, 179–
182, 1976.
- [25] B. Martinet, Régularisation d,inéquations variationnelles par approximations successives,
Rev. Fran´caise d,Inform. et de Rech. Opérationnelle, 3, 154–158, 1970.
- [26] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J.
Control Optim. 14, 877–898, 1976.
Year 2020,
Volume: 49 Issue: 1, 399 - 408, 06.02.2020
Mohsen Tahernia
Sirous Moradi
,
Somayeh Jafari
References
- [1] P. Ahmadi and H. Khatibzadeh, On the convergence of inexact proximal point algorithm
on Hadamard manifolds, Taiwanese J. Math. 18, 419–433, 2014.
- [2] B. Ahmadi Kakavandi, Weak topologies in complete CAT(0) metric spaces, Proc.
Amer. Math. Soc. 141, 1029–1039, 2013.
- [3] B. Ahmadi Kakavandi and M. Amini, Duality and subdifierential for convex functions
on complete CAT(0) metric spaces, Nonlinear Anal. 73, 3450–3455, 2010.
- [4] M. Bacak, Convex analysis and optimization in Hadamard spaces, De Gruyter Series
in Nonlinear Analysis and Applications, 22, De Gruyter, Berlin, 2014.
- [5] I.D. Berg and I.G. Nikolaev, Quasilinearization and curvature of Alexandrov spaces,
Geom. Dedicata, 133, 195–218, 2008.
- [6] H. Br´ezis and P.L. Lions, Produits infinis de r´esolvantes, Israel J. Math. 29, 329–345,
1978.
- [7] M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, 319, Springer,
Berlin, 1999.
- [8] K.S. Brown, Buildings, Springer, New York, 1989.
- [9] D. Burago, Y. Burago and S. Ivanov, A course in metric geometry, Graduate Studies
in Mathematics, 33 American Mathematical Society, Providence, RI, 2001.
- [10] H. Dehghan and J. Rooin, Metric projection and convergence theorems for nonexpansive
mappings in Hadamard spaces, arXiv: 1410.1137v1[math.FA].
- [11] S. Dhompongsa and B. Panyanak, On △-convergence theorems in CAT(0) spaces,
Comput. Math. Appl. 56, 2572–2579, 2008.
- [12] B. Djafari Rouhani and H. Khatibzadeh, On the proximal point algorithm, J. Optim.
Theory Appl. 137, 411–417, 2008.
- [13] B. Djafari Rouhani and S. Moradi, Strong convergence of two proximal point algorithms
with possible unbounded error sequences, J. Optim.Theory Appl. 172, 222–235,
2017.
- [14] R. Esp´inola and A. Fern´andez-Le´on, CAT(k)-spaces, weak convergence and fixed
points, J. Math. Anal. Appl. 353, 410–427, 2009.
- [15] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive
mappings. Monographs and Textbooks in Pure and Applied Mathematics, Marcel
Dekker Inc., New York, 1984.
- [16] M. Gromov and S.M. Bates, Metric structures for Riemannian and non-Riemannian
spaces, Progress in Mathematics, 152, eds. J. Lafontaine and P. Pansu) (Birkh¨auser,
Boston, 1999, with appendices by M. Katz, P. Pansu and S. Semmes.
- [17] O. G¨uler, On the convergence of the proximal point algorithm for convex minimization,
SIAM J. Control Optim. 29, 403–419, 1991.
- [18] M.T. Heydari and S. Ranjbar, Halpern-type proximal point algorithm in complete
CAT(0) metric spaces, An. St. Univ. Ovidius Constanta. 24 (3), 141–159, 2016.
- [19] J. Jöst, Nonpositive curvature: geometric and analytic aspects, Lectures in Mathematics,
Birkhauser, Basel, 1997.
- [20] H. Khatibzadeh and S. Ranjbar, Monotone operators and the proximal point algorithm
in complete CAT(0) metric spaces, J. Aust. Math. Soc. 103 (1), 70–90, 2017.
- [21] W.A. Kirk, Fixed point theorems in CAT(0) spaces and $\mathbb{R}$-trees, J. Fixed Point Theory
Appl. 4, 309–316, 2004.
- [22] W.A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear
Anal. (TMA) 68, 3689–3696, 2008.
- [23] C. Li, G. Lopez and V. Martin-Marquez, Monotone vector fields and the proximal
point algorithm on Hadamard manifolds, J. London Math. Soc. 79 (2), 663–683,
2009.
- [24] T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60, 179–
182, 1976.
- [25] B. Martinet, Régularisation d,inéquations variationnelles par approximations successives,
Rev. Fran´caise d,Inform. et de Rech. Opérationnelle, 3, 154–158, 1970.
- [26] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J.
Control Optim. 14, 877–898, 1976.