Research Article
BibTex RIS Cite
Year 2020, Volume: 49 Issue: 1, 180 - 194, 06.02.2020
https://doi.org/10.15672/hujms.546340

Abstract

References

  • [1] E.A. Baderko, The solvability of boundary value problems for higher order parabolic equations in domains with curvilinear lateral boundaries, Differ. Uravn. 10 (12), 1781– 1792, 1976.
  • [2] E.A. Baderko, On the solution of boundary value problems for linear parabolic equations of arbitrary order in noncylindrical domains by the method of boundary integral equations, PhD Thesis, Moscow, 1992.
  • [3] V. Besov, Continuation of functions from $L_p^l$ and $W_p^l$, Proc. Steklov Inst. Math. 89, 5–17, 1967.
  • [4] M.F. Cherepova, On the solvability of boundary value problems for a higher order parabolic equation with growing coefficients, Dokl. Math. 74 (3), 819–820 2006.
  • [5] S. Cherfaoui, A. Kessab, and A. Kheloufi, On 2m-th order parabolic equations with mixed boundary conditions in non-rectangular domains, Sib. Èlektron. Mat. Izv. 14, 73–91, 2017.
  • [6] V.A. Galaktionov, On regularity of a boundary point for higher-order parabolic equations: towards Petrovskii-type criterion by blow-up approach, Nonlinear Differ. Equ. Appl. 5 (16), 597–655, 2009.
  • [7] A. Grimaldi Piro and F. Ragnedda, Higher-order parabolic operators in domains with a "nonsmooth" boundary, Rend. Sem. Fac.Sci. Univ. Cagliari 54, 45–62, 1984.
  • [8] P. Grisvard and G. Looss, Problèmes aux limites unilatéraux dans des domaines non réguliers, Jour. Equ. Dériv. Part. 1–26, 1976.
  • [9] A. Kheloufi, Resolutions of parabolic equations in non-symmetric conical domains, Electron. J. Differ. Equ. 2012 (116), 1–14, 2012.
  • [10] A. Kheloufi, On a fourth order parabolic equation in a nonregular domain of $\mathbb{R}^3$, Mediterr. J. Math. 12, 803–820, 2015.
  • [11] A. Kheloufi, Study of a 2m-th order parabolic equation in a non-regular type of prism of $\mathbb{R}^{N+1}$, Georgian Math. J. 23 (2), 227–237, 2016.
  • [12] A. Kheloufi, On the Dirichlet problem for the heat equation in non-symmetric conical domains of $\mathbb{R}^{N+1}$, Palestine J. Math. 6 (1), 287–300, 2017.
  • [13] A. Kheloufi and B.K. Sadallah, On the regularity of the heat equation solution in noncylindrical domains: two approaches, Appl. Math. Comput. 218, 1623–1633, 2011.
  • [14] A. Kheloufi and B.K. Sadallah, Study of the heat equation in a symmetric conical type domain of $\mathbb{R}^{N+1}$, Math. Methods Appl. Sci. 37, 1807–1818, 2014.
  • [15] A. Kheloufi and B.K. Sadallah, Resolution of a high-order parabolic equation in conical time-dependent domains of $\mathbb{R}^{3}$, Arab J. Math. Sci. 22, 165–181, 2016.
  • [16] V.A. Kondrat’ev, Boundary problems for parabolic equations in closed regions, Am. Math. Soc. Providence. R I. 450–504, 1966.
  • [17] V.A. Kozlov, Coefficients in the asymptotic solutions of the Cauchy boundary-value parabolic problems in domains with a conical point, Siberian Math. J. 29, 222–233, 1988.
  • [18] R. Labbas and B.K. Sadallah, Smoothness of the solution of a fourth order parabolic equation in a polygonal domain, Int. J. Appl. Math. 1, 75–90, 1999.
  • [19] O.A. Ladyzhenskaya and V.A. Solonnikov and N.N. Ural’tseva, Linear and quasilinear equations of parabolic type, (A.M.S., Providence, Rhode Island, 1968).
  • [20] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, 1, 2, Dunod, Paris, 1968.
  • [21] A. Maghnouji, Problèmes aux limites paraboliques dans un domaine non régulier, C.R.A.S. 316, 331–336, 1993.
  • [22] V.P. Mikhailov, The Dirichlet problem for a parabolic equation I, Mat. Sb. (N.S.) 61 (103), 40–64, 1963.
  • [23] V.P. Mikhailov, The Dirichlet problem for a parabolic equation II, Mat. Sb. (N.S.) 62 (104), 140–159, 1963.
  • [24] B.K. Sadallah, Etude d’un problème 2m-parabolique dans des domaines plan non rectangulaires, Boll. Un. Mat. Ital. 5 (2-B), 51–112, 1983.
  • [25] B.K. Sadallah, Singularities of the solution of a 2m-parabolic problem in a polygonal domain, Arab J. Math. Sci. 4 (2), 31–41, 1998.
  • [26] B.K. Sadallah, Study of a parabolic problem in a conical domain, Math. J. Okayama Univ. 56, 157–169, 2014.

Study of 2m-th order parabolic equation in non-symmetric conical domains

Year 2020, Volume: 49 Issue: 1, 180 - 194, 06.02.2020
https://doi.org/10.15672/hujms.546340

Abstract

This article is devoted to the study of a $N$-space dimensional linear high-order parabolic equation, subject to Cauchy-Dirichlet boundary conditions. The problem is set in a non-symmetric conical domain. The analysis is performed in the framework of weighted anisotropic Sobolev spaces by using the domain decomposition method.

References

  • [1] E.A. Baderko, The solvability of boundary value problems for higher order parabolic equations in domains with curvilinear lateral boundaries, Differ. Uravn. 10 (12), 1781– 1792, 1976.
  • [2] E.A. Baderko, On the solution of boundary value problems for linear parabolic equations of arbitrary order in noncylindrical domains by the method of boundary integral equations, PhD Thesis, Moscow, 1992.
  • [3] V. Besov, Continuation of functions from $L_p^l$ and $W_p^l$, Proc. Steklov Inst. Math. 89, 5–17, 1967.
  • [4] M.F. Cherepova, On the solvability of boundary value problems for a higher order parabolic equation with growing coefficients, Dokl. Math. 74 (3), 819–820 2006.
  • [5] S. Cherfaoui, A. Kessab, and A. Kheloufi, On 2m-th order parabolic equations with mixed boundary conditions in non-rectangular domains, Sib. Èlektron. Mat. Izv. 14, 73–91, 2017.
  • [6] V.A. Galaktionov, On regularity of a boundary point for higher-order parabolic equations: towards Petrovskii-type criterion by blow-up approach, Nonlinear Differ. Equ. Appl. 5 (16), 597–655, 2009.
  • [7] A. Grimaldi Piro and F. Ragnedda, Higher-order parabolic operators in domains with a "nonsmooth" boundary, Rend. Sem. Fac.Sci. Univ. Cagliari 54, 45–62, 1984.
  • [8] P. Grisvard and G. Looss, Problèmes aux limites unilatéraux dans des domaines non réguliers, Jour. Equ. Dériv. Part. 1–26, 1976.
  • [9] A. Kheloufi, Resolutions of parabolic equations in non-symmetric conical domains, Electron. J. Differ. Equ. 2012 (116), 1–14, 2012.
  • [10] A. Kheloufi, On a fourth order parabolic equation in a nonregular domain of $\mathbb{R}^3$, Mediterr. J. Math. 12, 803–820, 2015.
  • [11] A. Kheloufi, Study of a 2m-th order parabolic equation in a non-regular type of prism of $\mathbb{R}^{N+1}$, Georgian Math. J. 23 (2), 227–237, 2016.
  • [12] A. Kheloufi, On the Dirichlet problem for the heat equation in non-symmetric conical domains of $\mathbb{R}^{N+1}$, Palestine J. Math. 6 (1), 287–300, 2017.
  • [13] A. Kheloufi and B.K. Sadallah, On the regularity of the heat equation solution in noncylindrical domains: two approaches, Appl. Math. Comput. 218, 1623–1633, 2011.
  • [14] A. Kheloufi and B.K. Sadallah, Study of the heat equation in a symmetric conical type domain of $\mathbb{R}^{N+1}$, Math. Methods Appl. Sci. 37, 1807–1818, 2014.
  • [15] A. Kheloufi and B.K. Sadallah, Resolution of a high-order parabolic equation in conical time-dependent domains of $\mathbb{R}^{3}$, Arab J. Math. Sci. 22, 165–181, 2016.
  • [16] V.A. Kondrat’ev, Boundary problems for parabolic equations in closed regions, Am. Math. Soc. Providence. R I. 450–504, 1966.
  • [17] V.A. Kozlov, Coefficients in the asymptotic solutions of the Cauchy boundary-value parabolic problems in domains with a conical point, Siberian Math. J. 29, 222–233, 1988.
  • [18] R. Labbas and B.K. Sadallah, Smoothness of the solution of a fourth order parabolic equation in a polygonal domain, Int. J. Appl. Math. 1, 75–90, 1999.
  • [19] O.A. Ladyzhenskaya and V.A. Solonnikov and N.N. Ural’tseva, Linear and quasilinear equations of parabolic type, (A.M.S., Providence, Rhode Island, 1968).
  • [20] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, 1, 2, Dunod, Paris, 1968.
  • [21] A. Maghnouji, Problèmes aux limites paraboliques dans un domaine non régulier, C.R.A.S. 316, 331–336, 1993.
  • [22] V.P. Mikhailov, The Dirichlet problem for a parabolic equation I, Mat. Sb. (N.S.) 61 (103), 40–64, 1963.
  • [23] V.P. Mikhailov, The Dirichlet problem for a parabolic equation II, Mat. Sb. (N.S.) 62 (104), 140–159, 1963.
  • [24] B.K. Sadallah, Etude d’un problème 2m-parabolique dans des domaines plan non rectangulaires, Boll. Un. Mat. Ital. 5 (2-B), 51–112, 1983.
  • [25] B.K. Sadallah, Singularities of the solution of a 2m-parabolic problem in a polygonal domain, Arab J. Math. Sci. 4 (2), 31–41, 1998.
  • [26] B.K. Sadallah, Study of a parabolic problem in a conical domain, Math. J. Okayama Univ. 56, 157–169, 2014.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Saida Cherfaoui This is me 0000-0001-8492-6262

Amor Kessab This is me 0000-0001-6742-2759

Arezki Kheloufi This is me 0000-0001-5584-1454

Publication Date February 6, 2020
Published in Issue Year 2020 Volume: 49 Issue: 1

Cite

APA Cherfaoui, S., Kessab, A., & Kheloufi, A. (2020). Study of 2m-th order parabolic equation in non-symmetric conical domains. Hacettepe Journal of Mathematics and Statistics, 49(1), 180-194. https://doi.org/10.15672/hujms.546340
AMA Cherfaoui S, Kessab A, Kheloufi A. Study of 2m-th order parabolic equation in non-symmetric conical domains. Hacettepe Journal of Mathematics and Statistics. February 2020;49(1):180-194. doi:10.15672/hujms.546340
Chicago Cherfaoui, Saida, Amor Kessab, and Arezki Kheloufi. “Study of 2m-Th Order Parabolic Equation in Non-Symmetric Conical Domains”. Hacettepe Journal of Mathematics and Statistics 49, no. 1 (February 2020): 180-94. https://doi.org/10.15672/hujms.546340.
EndNote Cherfaoui S, Kessab A, Kheloufi A (February 1, 2020) Study of 2m-th order parabolic equation in non-symmetric conical domains. Hacettepe Journal of Mathematics and Statistics 49 1 180–194.
IEEE S. Cherfaoui, A. Kessab, and A. Kheloufi, “Study of 2m-th order parabolic equation in non-symmetric conical domains”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, pp. 180–194, 2020, doi: 10.15672/hujms.546340.
ISNAD Cherfaoui, Saida et al. “Study of 2m-Th Order Parabolic Equation in Non-Symmetric Conical Domains”. Hacettepe Journal of Mathematics and Statistics 49/1 (February 2020), 180-194. https://doi.org/10.15672/hujms.546340.
JAMA Cherfaoui S, Kessab A, Kheloufi A. Study of 2m-th order parabolic equation in non-symmetric conical domains. Hacettepe Journal of Mathematics and Statistics. 2020;49:180–194.
MLA Cherfaoui, Saida et al. “Study of 2m-Th Order Parabolic Equation in Non-Symmetric Conical Domains”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, 2020, pp. 180-94, doi:10.15672/hujms.546340.
Vancouver Cherfaoui S, Kessab A, Kheloufi A. Study of 2m-th order parabolic equation in non-symmetric conical domains. Hacettepe Journal of Mathematics and Statistics. 2020;49(1):180-94.