Research Article
BibTex RIS Cite
Year 2020, Volume: 49 Issue: 1, 221 - 235, 06.02.2020
https://doi.org/10.15672/hujms.546981

Abstract

References

  • [1] T. Aziz, A. Khan, I. Khan, and M. Stojanovic, A variable-mesh approximation method for singularly perturbed boundary-value problems using cubic spline in tension, Int. J. Comput. Math. 81 (12), 1513–1518, 2004.
  • [2] R.E. Bellman and R.E. Kalaba, Quasilinearization and nonlinear boundary value problems, Rand Corporation, 1965.
  • [3] M. Bestehorn and E.V. Grigorieva, E.V. Formation and propagation of localized states in extended systems, Ann. Phys. 13 (7-8), 423–431, 2004.
  • [4] E.P. Doolan, J.J.H. Miller, and W.H.A. Schilders, Uniform numerical methods for problems with initial and boundary layers, Boole Press, Dublin, 1980.
  • [5] M.A. Ezzat, M.I. Othman, and A.M. El-Karamany, ıState space approach to twodimensional generalized thermo-viscoelasticity with two relaxation times, Int. J. Eng. Sci. 40 (11), 1251–1274, 2002.
  • [6] P.A. Farrell, A.F. Hegarty, J.J.H. Miller, R.E. O’Riordan, and G.I. Shishkin, Robust computational techniques for boundary layers, CRC Press, New York, 2000.
  • [7] D.D. Joseph and L. Preziosi, Heat waves, Rev. Mod. Phys. 61 (1), 41, 1989.
  • [8] D.D. Joseph and L. Preziosi, Addendum to the paper heat waves, Rev. Mod. Phys. 62, 375–391, 1990.
  • [9] M.K. Kadalbajoo and D. Kumar, A computational method for singularly perturbed nonlinear differential-difference equations with small shift, Appl. Math. Model. 34 (9), 2584–2596, 2010.
  • [10] M.K. Kadalbajoo and V.P. Ramesh, Hybrid method for numerical solution of singularly perturbed delay differential equations, Appl. Math. Comput. 187 (2), 797–814, 2007.
  • [11] M.K. Kadalbajoo and K.K. Sharma, Parameter-uniform fitted mesh method for singularly perturbed delay differential equations with layer behavior, Electron. T. Numer. Ana. 23, 180–201, 2006.
  • [12] A. Lasota and M. Wazewska, Mathematical models of the red blood cell system, Mat. Stos. 6, 25–40, 1976.
  • [13] Q. Liu, X. Wang, and D. De Kee, Mass transport through swelling membranes, Int. J. Eng. Sci. 43 (19-20), 1464–1470, 2005.
  • [14] M.C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science 197 (4300), 287–289, 1977.
  • [15] J.J.H. Miller, R.E. ORiordan, and G.I. Shishkin, Fitted numerical methods for singular perturbation problems, World Scientific, Singapore, 1996.
  • [16] J. Mohapatra and S.Natesan, Uniform convergence analysis of finite difference scheme for singularly perturbed delay differential equation on an adaptively generated grid, Numer. Math.: Theory, Methods and Appl. 3 (1), 1–22, 2010.
  • [17] R.N. Rao and P.P. Chakravarthy, A finite difference method for singularly perturbed differential-difference equations with layer and oscillatory behavior, Appl. Math. Model. 37 (8), 5743–5755, 2013.
  • [18] A.S.V. Ravi Kanth and P. Murali Mohan Kumar, A numerical approach for solving singularly perturbed convection delay problems via exponentially fitted spline method, Calcolo 54 (3), 943–961, 2017.
  • [19] A.S.V. Ravi Kanth and P. Murali Mohan Kumar, Numerical treatment for a singularly perturbed convection delayed dominated diffusion equation via tension spliens, Int. J. Pure Appl. Math. 113 (6), 110–118, 2017.
  • [20] A.S.V. Ravi Kanth and P. Murali Mohan Kumar, A numerical technique for solving nonlinear singularly perturbed delay differential equations, Math. Model. Anal. 23 (1), 64–78, 2018.
  • [21] A.S.V. Ravi Kanth and P. Murali Mohan Kumar, Numerical method for a class of nonlinear singularly perturbed delay differential equations using parametric cubic spline, Int. J. Nonlin. Sci. Numer. Simul. 19 (3-4), 357–365, 2018.
  • [22] H.G. Roos, M. Stynes, and L. Tobiska, em Numerical methods for singularly perturbed differential equations, convection-diffusion and flow problems, Springer-Verlag, Berlin Heidelberg, 1996.
  • [23] G.I. Shishkin, A difference scheme for a singularly perturbed equation of parabolic type with discontinuous boundary conditions, Comput. Math. Math. Phys. 28 (6), 32–41, 1988.
  • [24] M. Stynes and H.G. Roos, The midpoint upwind scheme, App. Numer. Math. 23 (3), 361–374, 1997.

Computational results and analysis for a class of linear and nonlinear singularly perturbed convection delay problems on Shishkin mesh

Year 2020, Volume: 49 Issue: 1, 221 - 235, 06.02.2020
https://doi.org/10.15672/hujms.546981

Abstract

This article presents a hybrid numerical scheme for a class of linear and nonlinear singularly perturbed convection delay problems on piecewise uniform. The proposed hybrid numerical scheme comprises with the tension spline scheme in the boundary layer region and the midpoint approximation in the outer region on piecewise uniform mesh. Error analysis of the proposed scheme is discussed and is shown $\varepsilon$-uniformly convergent. Numerical experiments for linear and nonlinear are performed to confirm the theoretical analysis.

References

  • [1] T. Aziz, A. Khan, I. Khan, and M. Stojanovic, A variable-mesh approximation method for singularly perturbed boundary-value problems using cubic spline in tension, Int. J. Comput. Math. 81 (12), 1513–1518, 2004.
  • [2] R.E. Bellman and R.E. Kalaba, Quasilinearization and nonlinear boundary value problems, Rand Corporation, 1965.
  • [3] M. Bestehorn and E.V. Grigorieva, E.V. Formation and propagation of localized states in extended systems, Ann. Phys. 13 (7-8), 423–431, 2004.
  • [4] E.P. Doolan, J.J.H. Miller, and W.H.A. Schilders, Uniform numerical methods for problems with initial and boundary layers, Boole Press, Dublin, 1980.
  • [5] M.A. Ezzat, M.I. Othman, and A.M. El-Karamany, ıState space approach to twodimensional generalized thermo-viscoelasticity with two relaxation times, Int. J. Eng. Sci. 40 (11), 1251–1274, 2002.
  • [6] P.A. Farrell, A.F. Hegarty, J.J.H. Miller, R.E. O’Riordan, and G.I. Shishkin, Robust computational techniques for boundary layers, CRC Press, New York, 2000.
  • [7] D.D. Joseph and L. Preziosi, Heat waves, Rev. Mod. Phys. 61 (1), 41, 1989.
  • [8] D.D. Joseph and L. Preziosi, Addendum to the paper heat waves, Rev. Mod. Phys. 62, 375–391, 1990.
  • [9] M.K. Kadalbajoo and D. Kumar, A computational method for singularly perturbed nonlinear differential-difference equations with small shift, Appl. Math. Model. 34 (9), 2584–2596, 2010.
  • [10] M.K. Kadalbajoo and V.P. Ramesh, Hybrid method for numerical solution of singularly perturbed delay differential equations, Appl. Math. Comput. 187 (2), 797–814, 2007.
  • [11] M.K. Kadalbajoo and K.K. Sharma, Parameter-uniform fitted mesh method for singularly perturbed delay differential equations with layer behavior, Electron. T. Numer. Ana. 23, 180–201, 2006.
  • [12] A. Lasota and M. Wazewska, Mathematical models of the red blood cell system, Mat. Stos. 6, 25–40, 1976.
  • [13] Q. Liu, X. Wang, and D. De Kee, Mass transport through swelling membranes, Int. J. Eng. Sci. 43 (19-20), 1464–1470, 2005.
  • [14] M.C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science 197 (4300), 287–289, 1977.
  • [15] J.J.H. Miller, R.E. ORiordan, and G.I. Shishkin, Fitted numerical methods for singular perturbation problems, World Scientific, Singapore, 1996.
  • [16] J. Mohapatra and S.Natesan, Uniform convergence analysis of finite difference scheme for singularly perturbed delay differential equation on an adaptively generated grid, Numer. Math.: Theory, Methods and Appl. 3 (1), 1–22, 2010.
  • [17] R.N. Rao and P.P. Chakravarthy, A finite difference method for singularly perturbed differential-difference equations with layer and oscillatory behavior, Appl. Math. Model. 37 (8), 5743–5755, 2013.
  • [18] A.S.V. Ravi Kanth and P. Murali Mohan Kumar, A numerical approach for solving singularly perturbed convection delay problems via exponentially fitted spline method, Calcolo 54 (3), 943–961, 2017.
  • [19] A.S.V. Ravi Kanth and P. Murali Mohan Kumar, Numerical treatment for a singularly perturbed convection delayed dominated diffusion equation via tension spliens, Int. J. Pure Appl. Math. 113 (6), 110–118, 2017.
  • [20] A.S.V. Ravi Kanth and P. Murali Mohan Kumar, A numerical technique for solving nonlinear singularly perturbed delay differential equations, Math. Model. Anal. 23 (1), 64–78, 2018.
  • [21] A.S.V. Ravi Kanth and P. Murali Mohan Kumar, Numerical method for a class of nonlinear singularly perturbed delay differential equations using parametric cubic spline, Int. J. Nonlin. Sci. Numer. Simul. 19 (3-4), 357–365, 2018.
  • [22] H.G. Roos, M. Stynes, and L. Tobiska, em Numerical methods for singularly perturbed differential equations, convection-diffusion and flow problems, Springer-Verlag, Berlin Heidelberg, 1996.
  • [23] G.I. Shishkin, A difference scheme for a singularly perturbed equation of parabolic type with discontinuous boundary conditions, Comput. Math. Math. Phys. 28 (6), 32–41, 1988.
  • [24] M. Stynes and H.G. Roos, The midpoint upwind scheme, App. Numer. Math. 23 (3), 361–374, 1997.
There are 24 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

A.s.v. Ravi Kanth 0000-0002-5266-7945

P. Murali Mohan Kumar This is me 0000-0001-8472-9023

Publication Date February 6, 2020
Published in Issue Year 2020 Volume: 49 Issue: 1

Cite

APA Kanth, A. R., & Kumar, P. M. M. (2020). Computational results and analysis for a class of linear and nonlinear singularly perturbed convection delay problems on Shishkin mesh. Hacettepe Journal of Mathematics and Statistics, 49(1), 221-235. https://doi.org/10.15672/hujms.546981
AMA Kanth AR, Kumar PMM. Computational results and analysis for a class of linear and nonlinear singularly perturbed convection delay problems on Shishkin mesh. Hacettepe Journal of Mathematics and Statistics. February 2020;49(1):221-235. doi:10.15672/hujms.546981
Chicago Kanth, A.s.v. Ravi, and P. Murali Mohan Kumar. “Computational Results and Analysis for a Class of Linear and Nonlinear Singularly Perturbed Convection Delay Problems on Shishkin Mesh”. Hacettepe Journal of Mathematics and Statistics 49, no. 1 (February 2020): 221-35. https://doi.org/10.15672/hujms.546981.
EndNote Kanth AR, Kumar PMM (February 1, 2020) Computational results and analysis for a class of linear and nonlinear singularly perturbed convection delay problems on Shishkin mesh. Hacettepe Journal of Mathematics and Statistics 49 1 221–235.
IEEE A. R. Kanth and P. M. M. Kumar, “Computational results and analysis for a class of linear and nonlinear singularly perturbed convection delay problems on Shishkin mesh”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, pp. 221–235, 2020, doi: 10.15672/hujms.546981.
ISNAD Kanth, A.s.v. Ravi - Kumar, P. Murali Mohan. “Computational Results and Analysis for a Class of Linear and Nonlinear Singularly Perturbed Convection Delay Problems on Shishkin Mesh”. Hacettepe Journal of Mathematics and Statistics 49/1 (February 2020), 221-235. https://doi.org/10.15672/hujms.546981.
JAMA Kanth AR, Kumar PMM. Computational results and analysis for a class of linear and nonlinear singularly perturbed convection delay problems on Shishkin mesh. Hacettepe Journal of Mathematics and Statistics. 2020;49:221–235.
MLA Kanth, A.s.v. Ravi and P. Murali Mohan Kumar. “Computational Results and Analysis for a Class of Linear and Nonlinear Singularly Perturbed Convection Delay Problems on Shishkin Mesh”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 1, 2020, pp. 221-35, doi:10.15672/hujms.546981.
Vancouver Kanth AR, Kumar PMM. Computational results and analysis for a class of linear and nonlinear singularly perturbed convection delay problems on Shishkin mesh. Hacettepe Journal of Mathematics and Statistics. 2020;49(1):221-35.