Year 2020,
Volume: 49 Issue: 1, 221 - 235, 06.02.2020
A.s.v. Ravi Kanth
,
P. Murali Mohan Kumar
References
- [1] T. Aziz, A. Khan, I. Khan, and M. Stojanovic, A variable-mesh approximation method
for singularly perturbed boundary-value problems using cubic spline in tension, Int. J.
Comput. Math. 81 (12), 1513–1518, 2004.
- [2] R.E. Bellman and R.E. Kalaba, Quasilinearization and nonlinear boundary value
problems, Rand Corporation, 1965.
- [3] M. Bestehorn and E.V. Grigorieva, E.V. Formation and propagation of localized states
in extended systems, Ann. Phys. 13 (7-8), 423–431, 2004.
- [4] E.P. Doolan, J.J.H. Miller, and W.H.A. Schilders, Uniform numerical methods for
problems with initial and boundary layers, Boole Press, Dublin, 1980.
- [5] M.A. Ezzat, M.I. Othman, and A.M. El-Karamany, ıState space approach to twodimensional
generalized thermo-viscoelasticity with two relaxation times, Int. J. Eng.
Sci. 40 (11), 1251–1274, 2002.
- [6] P.A. Farrell, A.F. Hegarty, J.J.H. Miller, R.E. O’Riordan, and G.I. Shishkin, Robust
computational techniques for boundary layers, CRC Press, New York, 2000.
- [7] D.D. Joseph and L. Preziosi, Heat waves, Rev. Mod. Phys. 61 (1), 41, 1989.
- [8] D.D. Joseph and L. Preziosi, Addendum to the paper heat waves, Rev. Mod. Phys.
62, 375–391, 1990.
- [9] M.K. Kadalbajoo and D. Kumar, A computational method for singularly perturbed
nonlinear differential-difference equations with small shift, Appl. Math. Model. 34
(9), 2584–2596, 2010.
- [10] M.K. Kadalbajoo and V.P. Ramesh, Hybrid method for numerical solution of singularly
perturbed delay differential equations, Appl. Math. Comput. 187 (2), 797–814,
2007.
- [11] M.K. Kadalbajoo and K.K. Sharma, Parameter-uniform fitted mesh method for singularly
perturbed delay differential equations with layer behavior, Electron. T. Numer.
Ana. 23, 180–201, 2006.
- [12] A. Lasota and M. Wazewska, Mathematical models of the red blood cell system, Mat.
Stos. 6, 25–40, 1976.
- [13] Q. Liu, X. Wang, and D. De Kee, Mass transport through swelling membranes, Int.
J. Eng. Sci. 43 (19-20), 1464–1470, 2005.
- [14] M.C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,
Science 197 (4300), 287–289, 1977.
- [15] J.J.H. Miller, R.E. ORiordan, and G.I. Shishkin, Fitted numerical methods for singular
perturbation problems, World Scientific, Singapore, 1996.
- [16] J. Mohapatra and S.Natesan, Uniform convergence analysis of finite difference scheme
for singularly perturbed delay differential equation on an adaptively generated grid,
Numer. Math.: Theory, Methods and Appl. 3 (1), 1–22, 2010.
- [17] R.N. Rao and P.P. Chakravarthy, A finite difference method for singularly perturbed
differential-difference equations with layer and oscillatory behavior, Appl. Math.
Model. 37 (8), 5743–5755, 2013.
- [18] A.S.V. Ravi Kanth and P. Murali Mohan Kumar, A numerical approach for solving
singularly perturbed convection delay problems via exponentially fitted spline method,
Calcolo 54 (3), 943–961, 2017.
- [19] A.S.V. Ravi Kanth and P. Murali Mohan Kumar, Numerical treatment for a singularly
perturbed convection delayed dominated diffusion equation via tension spliens, Int. J.
Pure Appl. Math. 113 (6), 110–118, 2017.
- [20] A.S.V. Ravi Kanth and P. Murali Mohan Kumar, A numerical technique for solving
nonlinear singularly perturbed delay differential equations, Math. Model. Anal. 23 (1),
64–78, 2018.
- [21] A.S.V. Ravi Kanth and P. Murali Mohan Kumar, Numerical method for a class of nonlinear
singularly perturbed delay differential equations using parametric cubic spline,
Int. J. Nonlin. Sci. Numer. Simul. 19 (3-4), 357–365, 2018.
- [22] H.G. Roos, M. Stynes, and L. Tobiska, em Numerical methods for singularly perturbed
differential equations, convection-diffusion and flow problems, Springer-Verlag,
Berlin Heidelberg, 1996.
- [23] G.I. Shishkin, A difference scheme for a singularly perturbed equation of parabolic type
with discontinuous boundary conditions, Comput. Math. Math. Phys. 28 (6), 32–41,
1988.
- [24] M. Stynes and H.G. Roos, The midpoint upwind scheme, App. Numer. Math. 23 (3),
361–374, 1997.
Computational results and analysis for a class of linear and nonlinear singularly perturbed convection delay problems on Shishkin mesh
Year 2020,
Volume: 49 Issue: 1, 221 - 235, 06.02.2020
A.s.v. Ravi Kanth
,
P. Murali Mohan Kumar
Abstract
This article presents a hybrid numerical scheme for a class of linear and nonlinear singularly perturbed convection delay problems on piecewise uniform. The proposed hybrid numerical scheme comprises with the tension spline scheme in the boundary layer region and the midpoint approximation in the outer region on piecewise uniform mesh. Error analysis of the proposed scheme is discussed and is shown $\varepsilon$-uniformly convergent. Numerical experiments for linear and nonlinear are performed to confirm the theoretical analysis.
References
- [1] T. Aziz, A. Khan, I. Khan, and M. Stojanovic, A variable-mesh approximation method
for singularly perturbed boundary-value problems using cubic spline in tension, Int. J.
Comput. Math. 81 (12), 1513–1518, 2004.
- [2] R.E. Bellman and R.E. Kalaba, Quasilinearization and nonlinear boundary value
problems, Rand Corporation, 1965.
- [3] M. Bestehorn and E.V. Grigorieva, E.V. Formation and propagation of localized states
in extended systems, Ann. Phys. 13 (7-8), 423–431, 2004.
- [4] E.P. Doolan, J.J.H. Miller, and W.H.A. Schilders, Uniform numerical methods for
problems with initial and boundary layers, Boole Press, Dublin, 1980.
- [5] M.A. Ezzat, M.I. Othman, and A.M. El-Karamany, ıState space approach to twodimensional
generalized thermo-viscoelasticity with two relaxation times, Int. J. Eng.
Sci. 40 (11), 1251–1274, 2002.
- [6] P.A. Farrell, A.F. Hegarty, J.J.H. Miller, R.E. O’Riordan, and G.I. Shishkin, Robust
computational techniques for boundary layers, CRC Press, New York, 2000.
- [7] D.D. Joseph and L. Preziosi, Heat waves, Rev. Mod. Phys. 61 (1), 41, 1989.
- [8] D.D. Joseph and L. Preziosi, Addendum to the paper heat waves, Rev. Mod. Phys.
62, 375–391, 1990.
- [9] M.K. Kadalbajoo and D. Kumar, A computational method for singularly perturbed
nonlinear differential-difference equations with small shift, Appl. Math. Model. 34
(9), 2584–2596, 2010.
- [10] M.K. Kadalbajoo and V.P. Ramesh, Hybrid method for numerical solution of singularly
perturbed delay differential equations, Appl. Math. Comput. 187 (2), 797–814,
2007.
- [11] M.K. Kadalbajoo and K.K. Sharma, Parameter-uniform fitted mesh method for singularly
perturbed delay differential equations with layer behavior, Electron. T. Numer.
Ana. 23, 180–201, 2006.
- [12] A. Lasota and M. Wazewska, Mathematical models of the red blood cell system, Mat.
Stos. 6, 25–40, 1976.
- [13] Q. Liu, X. Wang, and D. De Kee, Mass transport through swelling membranes, Int.
J. Eng. Sci. 43 (19-20), 1464–1470, 2005.
- [14] M.C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,
Science 197 (4300), 287–289, 1977.
- [15] J.J.H. Miller, R.E. ORiordan, and G.I. Shishkin, Fitted numerical methods for singular
perturbation problems, World Scientific, Singapore, 1996.
- [16] J. Mohapatra and S.Natesan, Uniform convergence analysis of finite difference scheme
for singularly perturbed delay differential equation on an adaptively generated grid,
Numer. Math.: Theory, Methods and Appl. 3 (1), 1–22, 2010.
- [17] R.N. Rao and P.P. Chakravarthy, A finite difference method for singularly perturbed
differential-difference equations with layer and oscillatory behavior, Appl. Math.
Model. 37 (8), 5743–5755, 2013.
- [18] A.S.V. Ravi Kanth and P. Murali Mohan Kumar, A numerical approach for solving
singularly perturbed convection delay problems via exponentially fitted spline method,
Calcolo 54 (3), 943–961, 2017.
- [19] A.S.V. Ravi Kanth and P. Murali Mohan Kumar, Numerical treatment for a singularly
perturbed convection delayed dominated diffusion equation via tension spliens, Int. J.
Pure Appl. Math. 113 (6), 110–118, 2017.
- [20] A.S.V. Ravi Kanth and P. Murali Mohan Kumar, A numerical technique for solving
nonlinear singularly perturbed delay differential equations, Math. Model. Anal. 23 (1),
64–78, 2018.
- [21] A.S.V. Ravi Kanth and P. Murali Mohan Kumar, Numerical method for a class of nonlinear
singularly perturbed delay differential equations using parametric cubic spline,
Int. J. Nonlin. Sci. Numer. Simul. 19 (3-4), 357–365, 2018.
- [22] H.G. Roos, M. Stynes, and L. Tobiska, em Numerical methods for singularly perturbed
differential equations, convection-diffusion and flow problems, Springer-Verlag,
Berlin Heidelberg, 1996.
- [23] G.I. Shishkin, A difference scheme for a singularly perturbed equation of parabolic type
with discontinuous boundary conditions, Comput. Math. Math. Phys. 28 (6), 32–41,
1988.
- [24] M. Stynes and H.G. Roos, The midpoint upwind scheme, App. Numer. Math. 23 (3),
361–374, 1997.