Research Article
BibTex RIS Cite
Year 2020, Volume: 49 Issue: 2, 843 - 853, 02.04.2020
https://doi.org/10.15672/hujms.479184

Abstract

References

  • [1] C. S. Bagewadi, and G. Ingalahalli, Ricci Solitons in Lorentzian α−Sasakian Manifolds, Acta Math. Acad. Paedagog. Nyházi. (N.S), 28 (1), 59-68, 2012.
  • [2] C. L. Bejan and M. Crasmareanu, Second Order Parallel Tensors and Ricci Solitons in 3-Dimensional Normal Paracontact Geometry, Ann. Glob. Anal. Geom., 46 , 117- 127, 2014.
  • [3] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin, 1976.
  • [4] B.-Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
  • [5] B.-Y. Chen, Some Results on Concircular Vector Fields and Their Applications to Ricci Solitons, Bull. Korean Math. Soc., 52 (5), 1535-1547, 2015.
  • [6] B.-Y. Chen, Rectifying Submanifolds of Riemannian Manifolds and Torqued Vector Fields, Kragujevac J. Math., 41 (1), 93-103, 2017.
  • [7] B.-Y. Chen, Classification of Torqued Vector Fields and Its Applications to Ricci Solitons, Kragujevac J. Math., 41 (2), 239-250, 2017.
  • [8] J. T. Cho and J. Park, Gradient Ricci Solitons with Semi-Symmetry, Bull. Korean Math. Soc., 51 (1), 213-219, 2014.
  • [9] A. Ghosh, Certain Contact Metrics as Ricci Almost Solitons, Results Maths., 65, 81-94, 2014.
  • [10] A. Ghosh, Kenmotsu 3-Metric as a Ricci Soliton, Chaos, Solitons & Fractals, 44 (8), 647-650, 2011.
  • [11] R. S. Hamilton, Three-Manifolds with Positive Ricci Curvature, J. Diff. Geom., 17 (2), 255-306, 1982.
  • [12] R. S. Hamilton, The Ricci Flow on Surfaces, Mathematics and General Relativity (Santa Cruz, CA, 1986), Contemp. Math., A.M.S, 71, 237-262, 1988.
  • [13] S. K. Hui, S. K. Yadav and A. Patra, Almost Conformal Ricci Solitons on f−Kenmotsu Manifolds, Khayyam J. Math., 5 (1), 89-104, 2019.
  • [14] J.-B. Jun, U. C. De and G. Pathak, On Kenmotsu Manifolds, J. Korean Math. Soc., 42 (3), 435-445, 2005.
  • [15] K. Kenmotsu, A Class of Almost Contact Riemannian Manifolds, Tohoku Math. J., 24, 93-103, 1972.
  • [16] H. G. Nagaraja and C. R. Premalatha, Ricci Solitons in Kenmotsu Manifolds, J. Math. Anal., 3 (2), 18-24, 2012.
  • [17] S. Y. Perktaş and S. Keleş, Ricci Solitons in 3-Dimensional Normal Almost Paracontact Metric Manifolds, Int. Electron. J. Geom., 8 (2), 34-45, 2015.
  • [18] R. Sharma, Certain Results on K-Contact and (k, μ)−Contact Manifolds, J. Geom., 89, (1-2), 138-147, 2008.
  • [19] R. Sharma and A. Ghosh, Sasakian 3-Manifolds as a Ricci Soliton Represents the Heisenberg Group, Int. J. Geom. Methods Mod. Phys, 8 (1), 149-154., 2011.
  • [20] S. Sular and C. Özgür, On Some Submanifolds of Kenmotsu Manifolds, Chaos, Solitons & Fractals, 4 (2), 1990-1995, 2009.
  • [21] M. M. Tripathi, Ricci Solitons in Contact Metric Manifolds, arXiv:0801.4222v1, [math DG], 2008.
  • [22] K. Yano and M. Kon, Structures on Manifolds, Series in Mathematics, World Scientific Publishing, Springer, 1984.
  • [23] H. İ. Yoldaş, Ş. E. Meriç, E. Yaşar, On Generic Submanifold of Sasakian Manifold with Concurrent Vector Field, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68 (2), 1983-1994, 2019.

On submanifolds of Kenmotsu manifold with Torqued vector field

Year 2020, Volume: 49 Issue: 2, 843 - 853, 02.04.2020
https://doi.org/10.15672/hujms.479184

Abstract

In this paper, we consider the submanifold $M$ of a Kenmotsu manifold $\tilde M$ endowed with torqued vector field $\mathcal{T}$. Also, we study the submanifold $M$ admitting a Ricci soliton of both Kenmotsu manifold $\tilde M$ and Kenmotsu space form $\tilde M(c)$. Indeed, we provide some necessary conditions for which such a submanifold $M$ is an $\eta-$Einstein. We have presented some related results and classified. Finally, we obtain an important characterization which classifies the submanifold $M$ admitting a Ricci soliton of Kenmotsu space form $\tilde M(c)$.

References

  • [1] C. S. Bagewadi, and G. Ingalahalli, Ricci Solitons in Lorentzian α−Sasakian Manifolds, Acta Math. Acad. Paedagog. Nyházi. (N.S), 28 (1), 59-68, 2012.
  • [2] C. L. Bejan and M. Crasmareanu, Second Order Parallel Tensors and Ricci Solitons in 3-Dimensional Normal Paracontact Geometry, Ann. Glob. Anal. Geom., 46 , 117- 127, 2014.
  • [3] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin, 1976.
  • [4] B.-Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
  • [5] B.-Y. Chen, Some Results on Concircular Vector Fields and Their Applications to Ricci Solitons, Bull. Korean Math. Soc., 52 (5), 1535-1547, 2015.
  • [6] B.-Y. Chen, Rectifying Submanifolds of Riemannian Manifolds and Torqued Vector Fields, Kragujevac J. Math., 41 (1), 93-103, 2017.
  • [7] B.-Y. Chen, Classification of Torqued Vector Fields and Its Applications to Ricci Solitons, Kragujevac J. Math., 41 (2), 239-250, 2017.
  • [8] J. T. Cho and J. Park, Gradient Ricci Solitons with Semi-Symmetry, Bull. Korean Math. Soc., 51 (1), 213-219, 2014.
  • [9] A. Ghosh, Certain Contact Metrics as Ricci Almost Solitons, Results Maths., 65, 81-94, 2014.
  • [10] A. Ghosh, Kenmotsu 3-Metric as a Ricci Soliton, Chaos, Solitons & Fractals, 44 (8), 647-650, 2011.
  • [11] R. S. Hamilton, Three-Manifolds with Positive Ricci Curvature, J. Diff. Geom., 17 (2), 255-306, 1982.
  • [12] R. S. Hamilton, The Ricci Flow on Surfaces, Mathematics and General Relativity (Santa Cruz, CA, 1986), Contemp. Math., A.M.S, 71, 237-262, 1988.
  • [13] S. K. Hui, S. K. Yadav and A. Patra, Almost Conformal Ricci Solitons on f−Kenmotsu Manifolds, Khayyam J. Math., 5 (1), 89-104, 2019.
  • [14] J.-B. Jun, U. C. De and G. Pathak, On Kenmotsu Manifolds, J. Korean Math. Soc., 42 (3), 435-445, 2005.
  • [15] K. Kenmotsu, A Class of Almost Contact Riemannian Manifolds, Tohoku Math. J., 24, 93-103, 1972.
  • [16] H. G. Nagaraja and C. R. Premalatha, Ricci Solitons in Kenmotsu Manifolds, J. Math. Anal., 3 (2), 18-24, 2012.
  • [17] S. Y. Perktaş and S. Keleş, Ricci Solitons in 3-Dimensional Normal Almost Paracontact Metric Manifolds, Int. Electron. J. Geom., 8 (2), 34-45, 2015.
  • [18] R. Sharma, Certain Results on K-Contact and (k, μ)−Contact Manifolds, J. Geom., 89, (1-2), 138-147, 2008.
  • [19] R. Sharma and A. Ghosh, Sasakian 3-Manifolds as a Ricci Soliton Represents the Heisenberg Group, Int. J. Geom. Methods Mod. Phys, 8 (1), 149-154., 2011.
  • [20] S. Sular and C. Özgür, On Some Submanifolds of Kenmotsu Manifolds, Chaos, Solitons & Fractals, 4 (2), 1990-1995, 2009.
  • [21] M. M. Tripathi, Ricci Solitons in Contact Metric Manifolds, arXiv:0801.4222v1, [math DG], 2008.
  • [22] K. Yano and M. Kon, Structures on Manifolds, Series in Mathematics, World Scientific Publishing, Springer, 1984.
  • [23] H. İ. Yoldaş, Ş. E. Meriç, E. Yaşar, On Generic Submanifold of Sasakian Manifold with Concurrent Vector Field, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68 (2), 1983-1994, 2019.
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Halil İbrahim Yoldaş 0000-0002-3238-6484

Şemsi Eken Meriç This is me 0000-0003-2783-1149

Erol Yaşar 0000-0001-8716-0901

Publication Date April 2, 2020
Published in Issue Year 2020 Volume: 49 Issue: 2

Cite

APA Yoldaş, H. İ., Eken Meriç, Ş., & Yaşar, E. (2020). On submanifolds of Kenmotsu manifold with Torqued vector field. Hacettepe Journal of Mathematics and Statistics, 49(2), 843-853. https://doi.org/10.15672/hujms.479184
AMA Yoldaş Hİ, Eken Meriç Ş, Yaşar E. On submanifolds of Kenmotsu manifold with Torqued vector field. Hacettepe Journal of Mathematics and Statistics. April 2020;49(2):843-853. doi:10.15672/hujms.479184
Chicago Yoldaş, Halil İbrahim, Şemsi Eken Meriç, and Erol Yaşar. “On Submanifolds of Kenmotsu Manifold With Torqued Vector Field”. Hacettepe Journal of Mathematics and Statistics 49, no. 2 (April 2020): 843-53. https://doi.org/10.15672/hujms.479184.
EndNote Yoldaş Hİ, Eken Meriç Ş, Yaşar E (April 1, 2020) On submanifolds of Kenmotsu manifold with Torqued vector field. Hacettepe Journal of Mathematics and Statistics 49 2 843–853.
IEEE H. İ. Yoldaş, Ş. Eken Meriç, and E. Yaşar, “On submanifolds of Kenmotsu manifold with Torqued vector field”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 2, pp. 843–853, 2020, doi: 10.15672/hujms.479184.
ISNAD Yoldaş, Halil İbrahim et al. “On Submanifolds of Kenmotsu Manifold With Torqued Vector Field”. Hacettepe Journal of Mathematics and Statistics 49/2 (April 2020), 843-853. https://doi.org/10.15672/hujms.479184.
JAMA Yoldaş Hİ, Eken Meriç Ş, Yaşar E. On submanifolds of Kenmotsu manifold with Torqued vector field. Hacettepe Journal of Mathematics and Statistics. 2020;49:843–853.
MLA Yoldaş, Halil İbrahim et al. “On Submanifolds of Kenmotsu Manifold With Torqued Vector Field”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 2, 2020, pp. 843-5, doi:10.15672/hujms.479184.
Vancouver Yoldaş Hİ, Eken Meriç Ş, Yaşar E. On submanifolds of Kenmotsu manifold with Torqued vector field. Hacettepe Journal of Mathematics and Statistics. 2020;49(2):843-5.