Year 2020, Volume 49 , Issue 4, Pages 1261 - 1269 2020-08-06

Ulam-Hyers stability for a nonlinear Volterra integro-differential equation

Vu HO [1] , Ngo Van HOA [2]


In this work, the Ulam-Hyers stability and the Ulam-Hyers-Rassias stability for the nonlinear Volterra integro-differential equations are established by employing the method of successive approximation. Some simple examples are given to illustrate the main results.

**************************************************************************************************************************

**************************************************************************************************************************

Ulam stability, successive approximation, nonlinear Volterra integro-differential equation
  • [1] M. Gachpazan and O. Baghani, Hyers–Ulam stability of nonlinear integral equation, Fixed Point Theory Appl. 2010, 6 pages, 2010.
  • [2] M. Gachpazan and O. Baghani, Hyers–Ulam stability of volterra integral equation, Inter. J. Nonlinear Anal. Appl. 1 (2), 19–25, 2010.
  • [3] J. Huang and Y. Li, Hyers–Ulam stability of delay differential equations of first order, Math. Nachr. 289 (1), 60–66, 2016.
  • [4] H.V. Jain and H.M. Byrne, Qualitative analysis of an integro-differential equation model of periodic chemotherapy, Appl. Math. Lett. 25 (12), 2132–2136, 2012.
  • [5] M. Janfada and G. Sadeghi, Stability of the Volterra integro-differential equation, Folia Math. 18 (1), 11–20, 2013.
  • [6] C. Jin and J. Luo, Stability of an integro-differential equation, Comput. Math. Appl. 57 (7), 1080–1088, 2009.
  • [7] M. Joshi, An existence theorem for an integro-differential equation, J. Math. Anal. Appl. 62 (1), 114–124, 1978.
  • [8] S.-M. Jung and J. Brzdek, Hyers–Ulam stability of the delay equation $y'(t)=\lambda y(t-\tau)$, Abstr. Appl. Anal. 2010, Art. Id. 372176, 2010.
  • [9] K.D. Kucche and S.T. Sutar, Stability via successive approximation for nonlinear implicit fractional differential equations, Moroccan J. Pure Appl. Anal. 3 (1), 36–55, 2017.
  • [10] K.D. Kucche and S.T. Sutar, On existence and stability results for nonlinear fractional delay differential equations, Bol. Soc. Parana. Mat. 36 (4), 55–75, 2018.
  • [11] V. Lakshmikantham, Theory of Integro-Differential Equations, CRC Press, Boca Raton, Florida, NY, 1995.
  • [12] J.P. Medlock, Integro-differential equation models in ecology and epidemiology, University of Washington, PhD Thesis, 2004.
  • [13] J.A. Oguntuase, On an inequality of Gronwall, J. Inequal. Pure Appl. Math. 2 (1), Art. No. 9, 2001.
  • [14] A.Z. Rahim Shah, A fixed point approach to the stability of a nonlinear volterra integrodifferential equation with delay, Hacet. J. Math. Stat. 47 (3), 615–623, 2018.
  • [15] S. Sevgin and H. Sevli, Stability of a nonlinear volterra integro-differential equation via a fixed point approach, J. Nonlinear Sci. Appl. 9, 200–207, 2016.
  • [16] V. Volterra, Theory of Functionals and of Integral and Integro-Differential Equations, Dover, New York, NY, 1959.
  • [17] A. Zada and S.O. Shah, Hyers–Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses, Hacet. J. Math. Stat. 47 (5), 1196–1205, 2018.
Primary Language en
Subjects Mathematics
Journal Section Mathematics
Authors

Orcid: 0000-0001-7274-6096
Author: Vu HO
Institution: Ton Duc Thang University
Country: Vietnam


Orcid: 0000-0002-4603-4682
Author: Ngo Van HOA (Primary Author)
Institution: Ton Duc Thang University
Country: Vietnam


Dates

Publication Date : August 6, 2020

Bibtex @research article { hujms483606, journal = {Hacettepe Journal of Mathematics and Statistics}, issn = {2651-477X}, eissn = {2651-477X}, address = {}, publisher = {Hacettepe University}, year = {2020}, volume = {49}, pages = {1261 - 1269}, doi = {10.15672/hujms.483606}, title = {Ulam-Hyers stability for a nonlinear Volterra integro-differential equation}, key = {cite}, author = {Ho, Vu and Hoa, Ngo Van} }
APA Ho, V , Hoa, N . (2020). Ulam-Hyers stability for a nonlinear Volterra integro-differential equation . Hacettepe Journal of Mathematics and Statistics , 49 (4) , 1261-1269 . DOI: 10.15672/hujms.483606
MLA Ho, V , Hoa, N . "Ulam-Hyers stability for a nonlinear Volterra integro-differential equation" . Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 1261-1269 <https://dergipark.org.tr/en/pub/hujms/issue/56305/483606>
Chicago Ho, V , Hoa, N . "Ulam-Hyers stability for a nonlinear Volterra integro-differential equation". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 1261-1269
RIS TY - JOUR T1 - Ulam-Hyers stability for a nonlinear Volterra integro-differential equation AU - Vu Ho , Ngo Van Hoa Y1 - 2020 PY - 2020 N1 - doi: 10.15672/hujms.483606 DO - 10.15672/hujms.483606 T2 - Hacettepe Journal of Mathematics and Statistics JF - Journal JO - JOR SP - 1261 EP - 1269 VL - 49 IS - 4 SN - 2651-477X-2651-477X M3 - doi: 10.15672/hujms.483606 UR - https://doi.org/10.15672/hujms.483606 Y2 - 2019 ER -
EndNote %0 Hacettepe Journal of Mathematics and Statistics Ulam-Hyers stability for a nonlinear Volterra integro-differential equation %A Vu Ho , Ngo Van Hoa %T Ulam-Hyers stability for a nonlinear Volterra integro-differential equation %D 2020 %J Hacettepe Journal of Mathematics and Statistics %P 2651-477X-2651-477X %V 49 %N 4 %R doi: 10.15672/hujms.483606 %U 10.15672/hujms.483606
ISNAD Ho, Vu , Hoa, Ngo Van . "Ulam-Hyers stability for a nonlinear Volterra integro-differential equation". Hacettepe Journal of Mathematics and Statistics 49 / 4 (August 2020): 1261-1269 . https://doi.org/10.15672/hujms.483606
AMA Ho V , Hoa N . Ulam-Hyers stability for a nonlinear Volterra integro-differential equation. Hacettepe Journal of Mathematics and Statistics. 2020; 49(4): 1261-1269.
Vancouver Ho V , Hoa N . Ulam-Hyers stability for a nonlinear Volterra integro-differential equation. Hacettepe Journal of Mathematics and Statistics. 2020; 49(4): 1261-1269.