Year 2020, Volume 49 , Issue 4, Pages 1216 - 1233 2020-08-06

Radii of starlikeness and convexity of generalized Struve functions

Evrim TOKLU [1]


In this paper, it is aimed to determine the radii of starlikeness and convexity of the normalized generalized Struve functions for three different kinds of normalization and to find tight lower and upper bounds for the radius of starlikeness and convexity of these normalized Struve functions by making use of Euler-Rayleigh inequalities. The Laguerre-Polya class of entire functions has a crucial role in constructing our main results. *********************************************************************



generalized Struve functions, univalent, starlike and convex functions, radius of starlikeness and convexity, Mittag-Leffler expansions, Laguerre-Polya class of entire functions
  • [1] İ. Aktaş and Á. Baricz, Bounds for radii of starlikeness of some q−Bessel functions, Results Math. 72, 947–963, 2017.
  • [2] İ. Aktaş, Á. Baricz, and H. Orhan, Bounds for radii of starlikeness and convexity of some special functions, Turkish J. Math. 42, 211–226, 2018.
  • [3] İ. Aktaş, Á. Baricz, and N. Yağmur, Bounds for the radii of univalence of some special functions, Math. Inequal. Appl. 20 (3), 825–843, 2017.
  • [4] İ. Aktaş, E. Toklu, and H. Orhan, Radii of uniform convexity of some special functions, Turkish J. Math. 42, 3010–3024, 2018.
  • [5] Á. Baricz, Generalized Bessel function of first kind, Lecture Notes in Mathematics, Springer, Berlin, 2010.
  • [6] Á. Baricz, D.K. Dimitrov, H. Orhan, and N. Yağmur, Radii of starlikeness of some special functions, Proc. Amer. Math. Soc. 144, 3355–3367, 2016.
  • [7] Á. Baricz, P.A. Kupán and R. Szász, The radius of starlikeness of normalized Bessel functions of the first kind, Proc. Amer. Math. Soc. 142 (6), 2019–2025, 2014.
  • [8] Á. Baricz, H. Orhan, and R. Szász, The radius of α− convexity of normalized Bessel functions of the first kind, Comput. Methods Funct. Theory 16 (1), 93–103, 2016.
  • [9] Á. Baricz and S. Sanjeev, Zeros of some special entire functions, Proc. Amer. Math. Soc. 146 (5), 2207–2216, 2018.
  • [10] Á. Baricz and R. Szász, The radius of convexity of normalized Bessel functions, Anal. Math. 41 (3), 141–151, 2015.
  • [11] Á. Baricz and R. Szász, The radius of convexity of normalized Bessel functions of the first kind, Anal. Appl. (Singap.) 12 (5), 485–509, 2014.
  • [12] Á. Baricz, E. Toklu, and E. Kadıoğlu, Radii of starlikeness and convexity of Wright functions, Math. Commun. 23, 97–117, 2018.
  • [13] N. Bohra and V. Ravichandran, Radii problems for normalized Bessel functions of the first kind, Comput. Methods Funct. Theory 18, 99–123, 2018.
  • [14] R.K. Brown, Univalence of Bessel functions, Proc. Amer. Math. Soc. 11, 278–283, 1960.
  • [15] E. Deniz and R. Szász, The radius of uniform convexity of Bessel functions, J. Math. Anal. 453 (1), 572–588, 2017.
  • [16] D.K. Dimitrov and Y.B. Cheikh, Laguerre polynomials as Jensen polynomials of Laguerre-Pólya entire functions, J. Comput. Appl. Math. 233, 703–707, 2009.
  • [17] P.L. Duren, Univalent Functions, Grundlehren Math. Wiss. 259, Springer, New York, 1983.
  • [18] E. Kreyszig and J. Todd, The radius of univalence of Bessel functions, Illinois J. Math. 4, 143–149, 1960.
  • [19] H.-J. Runckel, Zeros of entire functions, Trans. Amer. Math. Soc. 143, 343–362, 1969.
  • [20] G.N. Watson, A Treatise of the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1944.
  • [21] H.S. Wilf, The radius of univalence of certain entire functions, Illinois J. Math. 6 (2), 242–244, 1962.
Primary Language en
Subjects Mathematics
Journal Section Mathematics
Authors

Orcid: 0000-0002-2332-0336
Author: Evrim TOKLU (Primary Author)
Institution: AĞRI İBRAHİM ÇEÇEN UNİVERSİTY
Country: Turkey


Dates

Publication Date : August 6, 2020

Bibtex @research article { hujms518154, journal = {Hacettepe Journal of Mathematics and Statistics}, issn = {2651-477X}, eissn = {2651-477X}, address = {}, publisher = {Hacettepe University}, year = {2020}, volume = {49}, pages = {1216 - 1233}, doi = {10.15672/hujms.518154}, title = {Radii of starlikeness and convexity of generalized Struve functions}, key = {cite}, author = {Toklu, Evrim} }
APA Toklu, E . (2020). Radii of starlikeness and convexity of generalized Struve functions . Hacettepe Journal of Mathematics and Statistics , 49 (4) , 1216-1233 . DOI: 10.15672/hujms.518154
MLA Toklu, E . "Radii of starlikeness and convexity of generalized Struve functions" . Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 1216-1233 <https://dergipark.org.tr/en/pub/hujms/issue/56305/518154>
Chicago Toklu, E . "Radii of starlikeness and convexity of generalized Struve functions". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 1216-1233
RIS TY - JOUR T1 - Radii of starlikeness and convexity of generalized Struve functions AU - Evrim Toklu Y1 - 2020 PY - 2020 N1 - doi: 10.15672/hujms.518154 DO - 10.15672/hujms.518154 T2 - Hacettepe Journal of Mathematics and Statistics JF - Journal JO - JOR SP - 1216 EP - 1233 VL - 49 IS - 4 SN - 2651-477X-2651-477X M3 - doi: 10.15672/hujms.518154 UR - https://doi.org/10.15672/hujms.518154 Y2 - 2019 ER -
EndNote %0 Hacettepe Journal of Mathematics and Statistics Radii of starlikeness and convexity of generalized Struve functions %A Evrim Toklu %T Radii of starlikeness and convexity of generalized Struve functions %D 2020 %J Hacettepe Journal of Mathematics and Statistics %P 2651-477X-2651-477X %V 49 %N 4 %R doi: 10.15672/hujms.518154 %U 10.15672/hujms.518154
ISNAD Toklu, Evrim . "Radii of starlikeness and convexity of generalized Struve functions". Hacettepe Journal of Mathematics and Statistics 49 / 4 (August 2020): 1216-1233 . https://doi.org/10.15672/hujms.518154
AMA Toklu E . Radii of starlikeness and convexity of generalized Struve functions. Hacettepe Journal of Mathematics and Statistics. 2020; 49(4): 1216-1233.
Vancouver Toklu E . Radii of starlikeness and convexity of generalized Struve functions. Hacettepe Journal of Mathematics and Statistics. 2020; 49(4): 1216-1233.