Research Article
BibTex RIS Cite
Year 2020, Volume: 49 Issue: 4, 1437 - 1449, 06.08.2020
https://doi.org/10.15672/hujms.565367

Abstract

References

  • [1] M. Abdullahi Rashid, N. Jamali, B. Mashayekhy, S.Z. Pashaei and H. Torabi, On subgroup topologies on fundamental groups, doi:10.15672/hujms.464056.
  • [2] A. Arhangegel’skii and M. Tkachenko, Topological Groups and Related Structures, Atlantis Press, Amsterdam, 2008.
  • [3] A. Babaee, B. Mashayekhy and H. Mirebrahimi, On Hawaiian groups of some topological spaces, Topology Appl. 159 (8), 2043–2051, 2012.
  • [4] W.A. Bogley and A.J. Sieradski, Universal path spaces, http://people. oregonstate.edu/~bogleyw/research/ups.pdf.
  • [5] N. Brodskiy, J. Dydak, B. Labuz and A. Mitra, Covering maps for locally path connected spaces, Fund. Math. 218, 13–46, 2012.
  • [6] N. Brodskiy, J. Dydak, B. Labuz and A. Mitra, Topological and uniform structures on universal covering spaces, arXiv:1206.0071, 2012.
  • [7] G.R. Conner and J. Lamoreaux, On the existence of universal covering spaces for metric spaces and subsets of the Euclidean plane, Fund. Math. 187, 95–110, 2005.
  • [8] G.R. Conner, W. Hojka and M. Meilstrup, Archipelago groups, Proc. Amer. Math. Soc. 143, 4973–4988, 2015.
  • [9] K. Eda and K. Kawamura, Homotopy and homology groups of the n-dimensional Hawaiian Earring, Fund. Math. 165 (1), 17–28, 2000.
  • [10] P. Fabel, Multiplication is discontinuous in the Hawaiian Earring droup (with the Quotient Topology), Bull. Pol. Acad. Sci. Math. 59 (1), 77–83, 2011.
  • [11] H. Fischer and A. Zastrow, Generalized universal coverings and the shape group, Fund. Math. 197, 167–196, 2007.
  • [12] L. Fuchs, Infinite Abelian Groups I, Academic Press, New York, 1970.
  • [13] F.H. Ghane, Z. Hamed, B. Mashayekhy, and H. Mirebrahimi, Topological homotopy groups, Bull. Belg. Math. Soc. Simon Stevin, 15 (3), 455–464, 2008.
  • [14] F.H. Ghane, Z. Hamed, B. Mashayekhy and H. Mirebrahimi, On topological homotopy groups of n-Hawaiian like spaces, Topology Proc. 36, 255–266, 2010.
  • [15] Herfort and Hojka, Cotorsion and wild homology, Israel J. Math. 221, 275–290, 2017.
  • [16] N. Jamali, B. Mashayekhy, H. Torabi, S.Z. Pashaei and M. Abdullahi Rashid, On topologized fundamental groups with small loop transfer viewpoints, Acta Math. Vietnamica, 43, 1–27, 2018.
  • [17] U.H. Karimov and D. Repovš, Hawaiian groups of topological spaces (Russian), Uspekhi. Mat. Nauk. 61 (5), 185–186, 2006; transl. in Russian Math. Surv. 61 (5), 987–989, 2006.
  • [18] U.H. Karimov and D. Repovš, On the homology of the Harmonic archipelago, Central European J. Math. 10, 863–872, 2012.
  • [19] S.Z. Pashaei, B. Mashayekhy, H. Torabi and M. Abdullahi Rashid, Small loop transfer spaces with respect to subgroups of fundamental groups, Topology Appl. 232, 242–255, 2017.
  • [20] H. Passandideh, F.H. Ghane and Z. Hamed, On the homotopy groups of separable metric spaces, Topology Appl. 158, 1607–1614, 2011.
  • [21] E.H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
  • [22] B. Zimmermann-Huisgen, On Fuchs’ problem 76, J. Reine Angew. Math. 309, 86–91, 1979.

On topological homotopy groups and relation to Hawaiian groups

Year 2020, Volume: 49 Issue: 4, 1437 - 1449, 06.08.2020
https://doi.org/10.15672/hujms.565367

Abstract

By generalizing the whisker topology on the $n$th homotopy group of pointed space $(X, x_0)$, denoted by $\pi_n^{wh}(X, x_0)$, we show that $\pi_n^{wh}(X, x_0)$ is a topological group if $n \ge 2$. Also, we present some necessary and sufficient conditions for $\pi_n^{wh}(X,x_0)$ to be discrete, Hausdorff and indiscrete. Then we prove that $L_n(X,x_0)$ the natural epimorphic image of the Hawaiian group $\mathcal{H}_n(X, x_0)$ is equal to the set of all classes of convergent sequences to the identity in $\pi_n^{wh}(X, x_0)$. As a consequence, we show that $L_n(X, x_0) \cong L_n(Y, y_0)$ if $\pi_n^{wh}(X, x_0) \cong \pi_n^{wh}(Y, y_0)$, but the converse does not hold in general, except for some conditions. Also, we show that on some classes of spaces such as semilocally $n$-simply connected spaces and $n$-Hawaiian like spaces, the whisker topology and the topology induced by the compact-open topology of $n$-loop space coincide. Finally, we show that $n$-SLT paths can transfer $\pi_n^{wh}$ and hence $L_n$ isomorphically along its points.

References

  • [1] M. Abdullahi Rashid, N. Jamali, B. Mashayekhy, S.Z. Pashaei and H. Torabi, On subgroup topologies on fundamental groups, doi:10.15672/hujms.464056.
  • [2] A. Arhangegel’skii and M. Tkachenko, Topological Groups and Related Structures, Atlantis Press, Amsterdam, 2008.
  • [3] A. Babaee, B. Mashayekhy and H. Mirebrahimi, On Hawaiian groups of some topological spaces, Topology Appl. 159 (8), 2043–2051, 2012.
  • [4] W.A. Bogley and A.J. Sieradski, Universal path spaces, http://people. oregonstate.edu/~bogleyw/research/ups.pdf.
  • [5] N. Brodskiy, J. Dydak, B. Labuz and A. Mitra, Covering maps for locally path connected spaces, Fund. Math. 218, 13–46, 2012.
  • [6] N. Brodskiy, J. Dydak, B. Labuz and A. Mitra, Topological and uniform structures on universal covering spaces, arXiv:1206.0071, 2012.
  • [7] G.R. Conner and J. Lamoreaux, On the existence of universal covering spaces for metric spaces and subsets of the Euclidean plane, Fund. Math. 187, 95–110, 2005.
  • [8] G.R. Conner, W. Hojka and M. Meilstrup, Archipelago groups, Proc. Amer. Math. Soc. 143, 4973–4988, 2015.
  • [9] K. Eda and K. Kawamura, Homotopy and homology groups of the n-dimensional Hawaiian Earring, Fund. Math. 165 (1), 17–28, 2000.
  • [10] P. Fabel, Multiplication is discontinuous in the Hawaiian Earring droup (with the Quotient Topology), Bull. Pol. Acad. Sci. Math. 59 (1), 77–83, 2011.
  • [11] H. Fischer and A. Zastrow, Generalized universal coverings and the shape group, Fund. Math. 197, 167–196, 2007.
  • [12] L. Fuchs, Infinite Abelian Groups I, Academic Press, New York, 1970.
  • [13] F.H. Ghane, Z. Hamed, B. Mashayekhy, and H. Mirebrahimi, Topological homotopy groups, Bull. Belg. Math. Soc. Simon Stevin, 15 (3), 455–464, 2008.
  • [14] F.H. Ghane, Z. Hamed, B. Mashayekhy and H. Mirebrahimi, On topological homotopy groups of n-Hawaiian like spaces, Topology Proc. 36, 255–266, 2010.
  • [15] Herfort and Hojka, Cotorsion and wild homology, Israel J. Math. 221, 275–290, 2017.
  • [16] N. Jamali, B. Mashayekhy, H. Torabi, S.Z. Pashaei and M. Abdullahi Rashid, On topologized fundamental groups with small loop transfer viewpoints, Acta Math. Vietnamica, 43, 1–27, 2018.
  • [17] U.H. Karimov and D. Repovš, Hawaiian groups of topological spaces (Russian), Uspekhi. Mat. Nauk. 61 (5), 185–186, 2006; transl. in Russian Math. Surv. 61 (5), 987–989, 2006.
  • [18] U.H. Karimov and D. Repovš, On the homology of the Harmonic archipelago, Central European J. Math. 10, 863–872, 2012.
  • [19] S.Z. Pashaei, B. Mashayekhy, H. Torabi and M. Abdullahi Rashid, Small loop transfer spaces with respect to subgroups of fundamental groups, Topology Appl. 232, 242–255, 2017.
  • [20] H. Passandideh, F.H. Ghane and Z. Hamed, On the homotopy groups of separable metric spaces, Topology Appl. 158, 1607–1614, 2011.
  • [21] E.H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
  • [22] B. Zimmermann-Huisgen, On Fuchs’ problem 76, J. Reine Angew. Math. 309, 86–91, 1979.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Ameneh Babaee This is me 0000-0001-5243-0641

Behrooz Mashayekhy 0000-0001-5243-0641

Hanieh Mirebrahimi This is me 0000-0001-5243-0641

Hamid Torabi 0000-0001-5243-0641

Mahdi Abdullahi Rashid This is me 0000-0001-5243-0641

Seyyed Zeynal Pashaei This is me 0000-0001-5243-0641

Publication Date August 6, 2020
Published in Issue Year 2020 Volume: 49 Issue: 4

Cite

APA Babaee, A., Mashayekhy, B., Mirebrahimi, H., Torabi, H., et al. (2020). On topological homotopy groups and relation to Hawaiian groups. Hacettepe Journal of Mathematics and Statistics, 49(4), 1437-1449. https://doi.org/10.15672/hujms.565367
AMA Babaee A, Mashayekhy B, Mirebrahimi H, Torabi H, Abdullahi Rashid M, Pashaei SZ. On topological homotopy groups and relation to Hawaiian groups. Hacettepe Journal of Mathematics and Statistics. August 2020;49(4):1437-1449. doi:10.15672/hujms.565367
Chicago Babaee, Ameneh, Behrooz Mashayekhy, Hanieh Mirebrahimi, Hamid Torabi, Mahdi Abdullahi Rashid, and Seyyed Zeynal Pashaei. “On Topological Homotopy Groups and Relation to Hawaiian Groups”. Hacettepe Journal of Mathematics and Statistics 49, no. 4 (August 2020): 1437-49. https://doi.org/10.15672/hujms.565367.
EndNote Babaee A, Mashayekhy B, Mirebrahimi H, Torabi H, Abdullahi Rashid M, Pashaei SZ (August 1, 2020) On topological homotopy groups and relation to Hawaiian groups. Hacettepe Journal of Mathematics and Statistics 49 4 1437–1449.
IEEE A. Babaee, B. Mashayekhy, H. Mirebrahimi, H. Torabi, M. Abdullahi Rashid, and S. Z. Pashaei, “On topological homotopy groups and relation to Hawaiian groups”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 4, pp. 1437–1449, 2020, doi: 10.15672/hujms.565367.
ISNAD Babaee, Ameneh et al. “On Topological Homotopy Groups and Relation to Hawaiian Groups”. Hacettepe Journal of Mathematics and Statistics 49/4 (August 2020), 1437-1449. https://doi.org/10.15672/hujms.565367.
JAMA Babaee A, Mashayekhy B, Mirebrahimi H, Torabi H, Abdullahi Rashid M, Pashaei SZ. On topological homotopy groups and relation to Hawaiian groups. Hacettepe Journal of Mathematics and Statistics. 2020;49:1437–1449.
MLA Babaee, Ameneh et al. “On Topological Homotopy Groups and Relation to Hawaiian Groups”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 4, 2020, pp. 1437-49, doi:10.15672/hujms.565367.
Vancouver Babaee A, Mashayekhy B, Mirebrahimi H, Torabi H, Abdullahi Rashid M, Pashaei SZ. On topological homotopy groups and relation to Hawaiian groups. Hacettepe Journal of Mathematics and Statistics. 2020;49(4):1437-49.