Year 2020, Volume 49 , Issue 4, Pages 1471 - 1479 2020-08-06

A subclass of univalent functions associated with $q$-analogue of Choi-Saigo-Srivastava operator

Zhi-gang WANG [1] , Saqib HUSSAİN [2] , Muhammad NAEEM [3] , Tahir BAKHAT [4] , Shahid KHAN [5]


The main objective of the present paper is to define a subclass $Q_{q}(\lambda,\mu,A,B)$ of analytic functions by using subordination along with the newly defined $q$-analogue of Choi-Saigo-Srivastava operator. Such results as coefficient estimates, integral representation, linear combination, weighted and arithmetic means, and radius of starlikeness for this class are derived.

**********************************************************************************************************************************

analytic functions, univalent functions, $q$-differential operator, $q$-analogue of Choi-Saigo-Srivastava operator
  • [1] H. Aldweby and M. Darus, Some subordination results on q-analogue of Ruscheweyh differential operator, Abstr. Appl. Anal. 2014, 1–9, 2014.
  • [2] F.M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci. 2004, 1419–1436, 2004.
  • [3] F.M. Al-Oboudi, On classes of functions related to starlike functions with respect to symmetric conjugate points defined by a fractional differential operator, Complex Anal. Oper. Theory, 5, 647–658, 2011.
  • [4] F.M. Al-Oboudi and K.A. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl. 399, 655–667, 2008.
  • [5] G.A. Anastassiou and S.G. Gal, Geometric and approximation properties of generalized singular integrals in the unit disk, J. Korean Math. Soc. 23, 425–443, 2006.
  • [6] A. Aral, On the generalized Picard and Gauss Weierstrass singular integrals, J. Comput. Anal. Appl. 8, 249–261, 2006.
  • [7] A. Aral, On the generalized Picard and Gauss Weierstrass singular integrals, J. Comput. Anal. Appl. 8, 249–261, 2006.
  • [8] A. Aral and V. Gupta, On q-Baskakov type operators, Demonstr. Math. 42, 109–122, 2009.
  • [9] A. Aral and V. Gupta, Generalized q-Baskakov operators, Math. Slovaca, 61, 619–634, 2011.
  • [10] S.Z.H. Bukhari, M. Nazir, and M. Raza, Some generalisations of analytic functions with respect to 2k-symmetric conjugate points, Maejo Int. J. Sci. Technol. 10, 1–12, 2016.
  • [11] M. Govindaraj and S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math. 43, 475–487, 2017.
  • [12] S. Hussain, S. Khan, M.A. Zaighum, and M. Darus, Applications of a q-Salagean type operator on multivalent functions, J. Inequal. Appl. 2018, Art. 301, 2018.
  • [13] F.H. Jackson, On q-functions and a certain difference operator, Earth Environ. Sci. Tran. R. Soc. Edinb. 46, 253–281, 1909.
  • [14] F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41, 193–203, 1910.
  • [15] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math. 28, 297–326, 1973.
  • [16] S. Kanas and D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64, 1183–1196, 2014.
  • [17] M.-S. Liu, On a subclass of p-valent close to convex functions of type α and order β, J. Math. Study 30, 102–104, 1997.
  • [18] S. Mahmood and J. Sokol, New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Results Math. 71, 1–13, 2017.
  • [19] M. Naeem, S. Hussain, T. Mahmood, S. Khan, and M. Darus, A new subclass of analytic functions defined by using Salagean q-differential operator, Mathematics, 7, 458–469, 2019.
  • [20] K.I. Noor, On new classes of integral operator, J. Natur. Geom. 16, 71–80, 1999.
  • [21] K.I. Noor and M. A. Noor, On integral operators, J. Math. Anal. Appl. 238, 341–352, 1999.
  • [22] K.I. Noor, N. Khan, and Q.Z. Ahmad, Some properties of multivalent spiral-like functions, Maejo Int. J. Sci. Technol. 12, 139–151, 2018.
  • [23] M. Sabil, Q.Z. Ahmad, B. Khan, M. Tahir, and N. Khan, Generalisation of certain subclasses of analytic and bi-univalent functions, Maejo Int. J. Sci. Technol. 13, 1–9, 2019.
  • [24] F.M. Sakar and S.M. Aydoˇgan, Subclass of m-quasiconformal harmonic functions in association with Janowski starlike functions, Appl. Math. Comput. 319, 461–468, 2018.
  • [25] F.M. Sakar and S.M. Aydoˇgan, Coefficient bounds for certain subclasses of m-fold symmetric bi-univalent functions defined by convolution, Acta Univ. Apulensis Math. Inform. 55, 11–21, 2018.
  • [26] Z. Shareef, S. Hussain, and M. Darus, Convolution operator in geometric functions theory, J. Inequal. Appl. 2012, Art. 213, 2012.
  • [27] H.M. Srivastava, S. Khan, Q.Z. Ahmad, N. Khan, and S. Hussain, The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator, Stud. Univ. Babes-Bolyai Math. 63, 419–436, 2018.
Primary Language en
Subjects Mathematics
Journal Section Mathematics
Authors

Orcid: 0000-0001-6118-7196
Author: Zhi-gang WANG (Primary Author)
Institution: Hunan First Normal University
Country: China


Orcid: 0000-0001-6218-7199
Author: Saqib HUSSAİN
Institution: Comsats University Islamabad
Country: Pakistan


Orcid: 0000-0001-6871-9776
Author: Muhammad NAEEM
Institution: International Islamic University
Country: Pakistan


Orcid: 0000-0001-6128-1256
Author: Tahir BAKHAT
Institution: International Islamic University
Country: Pakistan


Orcid: 0000-0001-6118-5677
Author: Shahid KHAN
Institution: Riphah International University
Country: Pakistan


Dates

Publication Date : August 6, 2020

Bibtex @research article { hujms576878, journal = {Hacettepe Journal of Mathematics and Statistics}, issn = {2651-477X}, eissn = {2651-477X}, address = {}, publisher = {Hacettepe University}, year = {2020}, volume = {49}, pages = {1471 - 1479}, doi = {10.15672/hujms.576878}, title = {A subclass of univalent functions associated with \$q\$-analogue of Choi-Saigo-Srivastava operator}, key = {cite}, author = {Wang, Zhi-gang and Hussai̇n, Saqib and Naeem, Muhammad and Bakhat, Tahir and Khan, Shahid} }
APA Wang, Z , Hussai̇n, S , Naeem, M , Bakhat, T , Khan, S . (2020). A subclass of univalent functions associated with $q$-analogue of Choi-Saigo-Srivastava operator . Hacettepe Journal of Mathematics and Statistics , 49 (4) , 1471-1479 . DOI: 10.15672/hujms.576878
MLA Wang, Z , Hussai̇n, S , Naeem, M , Bakhat, T , Khan, S . "A subclass of univalent functions associated with $q$-analogue of Choi-Saigo-Srivastava operator" . Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 1471-1479 <https://dergipark.org.tr/en/pub/hujms/issue/56305/576878>
Chicago Wang, Z , Hussai̇n, S , Naeem, M , Bakhat, T , Khan, S . "A subclass of univalent functions associated with $q$-analogue of Choi-Saigo-Srivastava operator". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 1471-1479
RIS TY - JOUR T1 - A subclass of univalent functions associated with $q$-analogue of Choi-Saigo-Srivastava operator AU - Zhi-gang Wang , Saqib Hussai̇n , Muhammad Naeem , Tahir Bakhat , Shahid Khan Y1 - 2020 PY - 2020 N1 - doi: 10.15672/hujms.576878 DO - 10.15672/hujms.576878 T2 - Hacettepe Journal of Mathematics and Statistics JF - Journal JO - JOR SP - 1471 EP - 1479 VL - 49 IS - 4 SN - 2651-477X-2651-477X M3 - doi: 10.15672/hujms.576878 UR - https://doi.org/10.15672/hujms.576878 Y2 - 2019 ER -
EndNote %0 Hacettepe Journal of Mathematics and Statistics A subclass of univalent functions associated with $q$-analogue of Choi-Saigo-Srivastava operator %A Zhi-gang Wang , Saqib Hussai̇n , Muhammad Naeem , Tahir Bakhat , Shahid Khan %T A subclass of univalent functions associated with $q$-analogue of Choi-Saigo-Srivastava operator %D 2020 %J Hacettepe Journal of Mathematics and Statistics %P 2651-477X-2651-477X %V 49 %N 4 %R doi: 10.15672/hujms.576878 %U 10.15672/hujms.576878
ISNAD Wang, Zhi-gang , Hussai̇n, Saqib , Naeem, Muhammad , Bakhat, Tahir , Khan, Shahid . "A subclass of univalent functions associated with $q$-analogue of Choi-Saigo-Srivastava operator". Hacettepe Journal of Mathematics and Statistics 49 / 4 (August 2020): 1471-1479 . https://doi.org/10.15672/hujms.576878
AMA Wang Z , Hussai̇n S , Naeem M , Bakhat T , Khan S . A subclass of univalent functions associated with $q$-analogue of Choi-Saigo-Srivastava operator. Hacettepe Journal of Mathematics and Statistics. 2020; 49(4): 1471-1479.
Vancouver Wang Z , Hussai̇n S , Naeem M , Bakhat T , Khan S . A subclass of univalent functions associated with $q$-analogue of Choi-Saigo-Srivastava operator. Hacettepe Journal of Mathematics and Statistics. 2020; 49(4): 1471-1479.