Research Article
BibTex RIS Cite
Year 2020, Volume: 49 Issue: 5, 1798 - 1803, 06.10.2020
https://doi.org/10.15672/hujms.559837

Abstract

References

  • [1] O.M. Di Vincenzo, P. Koshlukov and R. La Scala, Involutions for upper triangular matrix algebras, Adv. in Appl. Math. 37, 541–568, 2006.
  • [2] J. Dixmier, C*-Algebras, North-Holland, Amsterdam, 1977.
  • [3] N. Jacobson, A topology for the set of primitive ideals in an arbitrary ring, Proc, Nat, Acad, Sci. U.S.A. 31, 333–338, 1945.
  • [4] T.K. Lee and Y. Zhou, Armendariz and reduced rings, Comm. Algebra 32 (6), 2287– 2299, 2004.
  • [5] G.J. Murphy, C*-Algebras and Operator Theory Academic Press, 1990.
  • [6] T.W. Palmer, Banach Algebras and the General Theory of $\ast$-Algebras Volume I Al- gebras and Banach Algebras, Encyclopedia of Mathematics and its Applications, Vol. 1, 1994.
  • [7] V. Paulsen, Completely Bounded Maps and Operator Algebras, vol. 78, Cambridge University Press, 2002.

Involutive triangular matrix algebras

Year 2020, Volume: 49 Issue: 5, 1798 - 1803, 06.10.2020
https://doi.org/10.15672/hujms.559837

Abstract

In this paper we provide new examples of Banach $ \ast $-subalgebras of the matrix algebra $M_n(\mathscr{A}) $ over a commutative unital $C^*$-algebra $\mathscr{A}$. For any involutive algebra, we define two involutions on the triangular matrix extensions. We prove that the triangular matrix algebras over any commutative unital $C^*$-algebra are Banach ${\ast}$-algebras and that the primitive ideals of these algebras and some of their Banach $ \ast $-subalgebras are all maximal.

*******************************************************************************

References

  • [1] O.M. Di Vincenzo, P. Koshlukov and R. La Scala, Involutions for upper triangular matrix algebras, Adv. in Appl. Math. 37, 541–568, 2006.
  • [2] J. Dixmier, C*-Algebras, North-Holland, Amsterdam, 1977.
  • [3] N. Jacobson, A topology for the set of primitive ideals in an arbitrary ring, Proc, Nat, Acad, Sci. U.S.A. 31, 333–338, 1945.
  • [4] T.K. Lee and Y. Zhou, Armendariz and reduced rings, Comm. Algebra 32 (6), 2287– 2299, 2004.
  • [5] G.J. Murphy, C*-Algebras and Operator Theory Academic Press, 1990.
  • [6] T.W. Palmer, Banach Algebras and the General Theory of $\ast$-Algebras Volume I Al- gebras and Banach Algebras, Encyclopedia of Mathematics and its Applications, Vol. 1, 1994.
  • [7] V. Paulsen, Completely Bounded Maps and Operator Algebras, vol. 78, Cambridge University Press, 2002.
There are 7 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Morteza Ahmadi 0000-0001-9464-5245

Ahmad Moussavi 0000-0002-7775-9782

Publication Date October 6, 2020
Published in Issue Year 2020 Volume: 49 Issue: 5

Cite

APA Ahmadi, M., & Moussavi, A. (2020). Involutive triangular matrix algebras. Hacettepe Journal of Mathematics and Statistics, 49(5), 1798-1803. https://doi.org/10.15672/hujms.559837
AMA Ahmadi M, Moussavi A. Involutive triangular matrix algebras. Hacettepe Journal of Mathematics and Statistics. October 2020;49(5):1798-1803. doi:10.15672/hujms.559837
Chicago Ahmadi, Morteza, and Ahmad Moussavi. “Involutive Triangular Matrix Algebras”. Hacettepe Journal of Mathematics and Statistics 49, no. 5 (October 2020): 1798-1803. https://doi.org/10.15672/hujms.559837.
EndNote Ahmadi M, Moussavi A (October 1, 2020) Involutive triangular matrix algebras. Hacettepe Journal of Mathematics and Statistics 49 5 1798–1803.
IEEE M. Ahmadi and A. Moussavi, “Involutive triangular matrix algebras”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 5, pp. 1798–1803, 2020, doi: 10.15672/hujms.559837.
ISNAD Ahmadi, Morteza - Moussavi, Ahmad. “Involutive Triangular Matrix Algebras”. Hacettepe Journal of Mathematics and Statistics 49/5 (October 2020), 1798-1803. https://doi.org/10.15672/hujms.559837.
JAMA Ahmadi M, Moussavi A. Involutive triangular matrix algebras. Hacettepe Journal of Mathematics and Statistics. 2020;49:1798–1803.
MLA Ahmadi, Morteza and Ahmad Moussavi. “Involutive Triangular Matrix Algebras”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 5, 2020, pp. 1798-03, doi:10.15672/hujms.559837.
Vancouver Ahmadi M, Moussavi A. Involutive triangular matrix algebras. Hacettepe Journal of Mathematics and Statistics. 2020;49(5):1798-803.