Year 2020, Volume 49 , Issue 5, Pages 1798 - 1803 2020-10-06

In this paper we provide new examples of Banach $ \ast $-subalgebras of the matrix algebra $M_n(\mathscr{A}) $ over a commutative unital $C^*$-algebra $\mathscr{A}$. For any involutive algebra, we define two involutions on the triangular matrix extensions. We prove that the triangular matrix algebras over any commutative unital $C^*$-algebra are Banach ${\ast}$-algebras and that the primitive ideals of these algebras and some of their Banach $ \ast $-subalgebras are all maximal.

*******************************************************************************

primitive ideal, maximal ideal, Banach ∗-algebra, C*-algebra
  • [1] O.M. Di Vincenzo, P. Koshlukov and R. La Scala, Involutions for upper triangular matrix algebras, Adv. in Appl. Math. 37, 541–568, 2006.
  • [2] J. Dixmier, C*-Algebras, North-Holland, Amsterdam, 1977.
  • [3] N. Jacobson, A topology for the set of primitive ideals in an arbitrary ring, Proc, Nat, Acad, Sci. U.S.A. 31, 333–338, 1945.
  • [4] T.K. Lee and Y. Zhou, Armendariz and reduced rings, Comm. Algebra 32 (6), 2287– 2299, 2004.
  • [5] G.J. Murphy, C*-Algebras and Operator Theory Academic Press, 1990.
  • [6] T.W. Palmer, Banach Algebras and the General Theory of $\ast$-Algebras Volume I Al- gebras and Banach Algebras, Encyclopedia of Mathematics and its Applications, Vol. 1, 1994.
  • [7] V. Paulsen, Completely Bounded Maps and Operator Algebras, vol. 78, Cambridge University Press, 2002.
Primary Language en
Subjects Mathematics
Journal Section Mathematics
Authors

Orcid: 0000-0001-9464-5245
Author: Morteza AHMADİ
Institution: Tarbiat Modares University
Country: Iran


Orcid: 0000-0002-7775-9782
Author: Ahmad MOUSSAVİ (Primary Author)
Institution: Tarbiat Modares University
Country: Iran


Dates

Publication Date : October 6, 2020

Bibtex @research article { hujms559837, journal = {Hacettepe Journal of Mathematics and Statistics}, issn = {2651-477X}, eissn = {2651-477X}, address = {}, publisher = {Hacettepe University}, year = {2020}, volume = {49}, pages = {1798 - 1803}, doi = {10.15672/hujms.559837}, title = {Involutive triangular matrix algebras}, key = {cite}, author = {Ahmadi̇, Morteza and Moussavi̇, Ahmad} }
APA Ahmadi̇, M , Moussavi̇, A . (2020). Involutive triangular matrix algebras . Hacettepe Journal of Mathematics and Statistics , 49 (5) , 1798-1803 . DOI: 10.15672/hujms.559837
MLA Ahmadi̇, M , Moussavi̇, A . "Involutive triangular matrix algebras" . Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 1798-1803 <https://dergipark.org.tr/en/pub/hujms/issue/57199/559837>
Chicago Ahmadi̇, M , Moussavi̇, A . "Involutive triangular matrix algebras". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 1798-1803
RIS TY - JOUR T1 - Involutive triangular matrix algebras AU - Morteza Ahmadi̇ , Ahmad Moussavi̇ Y1 - 2020 PY - 2020 N1 - doi: 10.15672/hujms.559837 DO - 10.15672/hujms.559837 T2 - Hacettepe Journal of Mathematics and Statistics JF - Journal JO - JOR SP - 1798 EP - 1803 VL - 49 IS - 5 SN - 2651-477X-2651-477X M3 - doi: 10.15672/hujms.559837 UR - https://doi.org/10.15672/hujms.559837 Y2 - 2020 ER -
EndNote %0 Hacettepe Journal of Mathematics and Statistics Involutive triangular matrix algebras %A Morteza Ahmadi̇ , Ahmad Moussavi̇ %T Involutive triangular matrix algebras %D 2020 %J Hacettepe Journal of Mathematics and Statistics %P 2651-477X-2651-477X %V 49 %N 5 %R doi: 10.15672/hujms.559837 %U 10.15672/hujms.559837
ISNAD Ahmadi̇, Morteza , Moussavi̇, Ahmad . "Involutive triangular matrix algebras". Hacettepe Journal of Mathematics and Statistics 49 / 5 (October 2020): 1798-1803 . https://doi.org/10.15672/hujms.559837
AMA Ahmadi̇ M , Moussavi̇ A . Involutive triangular matrix algebras. Hacettepe Journal of Mathematics and Statistics. 2020; 49(5): 1798-1803.
Vancouver Ahmadi̇ M , Moussavi̇ A . Involutive triangular matrix algebras. Hacettepe Journal of Mathematics and Statistics. 2020; 49(5): 1798-1803.