Research Article
BibTex RIS Cite
Year 2021, Volume: 50 Issue: 1, 33 - 40, 04.02.2021
https://doi.org/10.15672/hujms.519987

Abstract

References

  • [1] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM: Philadelphia, PA, USA, 1994.
  • [2] B. Bollobás, Modern Graph Theory, Springer: New York, NY, USA, 1998.
  • [3] B. Borovićanin and M. Petrović, On the index of cactuses with n vertices, Publ. Inst. Math 79 (93), 13-18, 2006.
  • [4] Y. Chen, Properties of spectra of graphs and line graphs, Appl. Math. J. Chinese Univ. Ser. B 17 (3), 371-376, 2002.
  • [5] M. Chen and B. Zhou, On the Signless Laplacian Spectral Radius of Cacti, Croat. Chem. Acta 89 (4), 493-498, 2016.
  • [6] L. Collatz and U. Sinogowitz, Spektrcn endlicher Graten, Abh. Math. Scm. Univ. Hamburg 21, 63-77, 1957.
  • [7] L. Cui, Y.-Z. Fan, The signless laplacian spectral radius of graphs with given number of cut vertices, Discuss. Math. Graph Theory 30 (1), 85-93, 2010.
  • [8] D. Cvetković, P. Rowlinson and SK. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (3), 155-171, 2007.
  • [9] D. Cvetkovic, P. Rowlinson, S. Simic, An Introduction to the Theory of Graph Spectra, Cambridge University Press, 2009.
  • [10] L. Feng , Q. Li and X.-D. Zhang, Minimizing the Laplacian spectral radius of trees with given matching number, Linear Multilinear Algebra 55, 199-207, 2007.
  • [11] J. Huang and S. Li, On the Spectral Characterizations of Graphs, Discuss. Math. Graph Theory 37, 729-744, 2017.
  • [12] S. Li and M. Zhang, On the signless Laplacian index of cacti with a given number of pendant vertices, Linear Algebra Appl. 436, 4400-4411, 2012.
  • [13] H. Lin and B. Zhou, Graphs with at most one signless Laplacian eigenvalue exceeding three, Linear Multilinear Algebra 63 (3), 377-383, 2015.
  • [14] L. Lovász and J. Pelikán, On the eigenvalues of trees, Period. Math. Hungar 3, 175- 182, 1973.
  • [15] V. Nikiforov, Merging the A- and Q-spectral theories, Appl. Anal. Discrete Math. 11, 81-107, 2017.
  • [16] V. Nikiforov, G. Pastén, O. Rojo and R.L. Soto, On the $A_{\alpha}$-spectra of trees, Linear Algebra Appl. 520 (3), 286-305, 2017.
  • [17] Y. Shen, L. You, M. Zhang and S. Li, On a conjecture for the signless Laplacian spectral radius of cacti with given matching number, Linear Multilinear Algebra 65 (4), 457-474, 2017.
  • [18] J. Wu, H. Deng and Q. Jiang, On the spectral radius of cacti with k-pendant vertices, Linear Multilinear Algebra 58, 391-398, 2010.
  • [19] T. Wu and H. Zhang, Per-spectral characterizations of some bipartite graphs, Discuss. Math. Graph Theory 37, 935-951, 2017.
  • [20] R. Xing and B. Zhou, On the least eigenvalue of cacti with pendant vertices, Linear Algebra Appl. 438, 2256-2273, 2013.
  • [21] J. Xue, H. Lin, S. Liu and J. Shu, On the $A_{\alpha}$-spectral radius of a graph, Linear Algebra Appl. 550, 105-120, 2018.
  • [22] Y. Yan, C.Wang and S.Wang, The $A_{\alpha}$-spectral radii of trees with specified maximum degree, submitted.
  • [23] A. Yu, M. Lu and F. Tian, On the spectral radius of graphs, Linear Algebra Appl. 387, 41-49, 2004.
  • [24] Bo. Zhou, Signless Laplacian spectral radius and Hamiltonicity, Linear Algebra Appl 423 (3), 566-570, 2010.

Sharp upper bounds of $A_\alpha$-spectral radius of cacti with given pendant vertices

Year 2021, Volume: 50 Issue: 1, 33 - 40, 04.02.2021
https://doi.org/10.15672/hujms.519987

Abstract

For $ \alpha \in [0,1]$, let $A_{\alpha}(G) = \alpha D(G) +(1-\alpha)A(G)$ be $A_{\alpha}$-matrix, where $A(G)$ is the adjacent matrix and $D(G)$ is the diagonal matrix of the degrees of a graph $G$. Clearly, $A_{0} (G)$ is the adjacent matrix and $2 A_{\frac{1}{2}}$ is the signless Laplacian matrix. A connected graph is a cactus graph if any two cycles of $G$ have at most one common vertex. We first propose the result for subdivision graphs, and determine the cacti maximizing $A_{\alpha}$-spectral radius subject to fixed pendant vertices. In addition, the corresponding extremal graphs are provided. As consequences, we determine the graph with the $A_{\alpha}$-spectral radius among all the cacti with $n$ vertices; we also characterize the $n$-vertex cacti with a perfect matching having the largest $A_{\alpha}$-spectral radius.

References

  • [1] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM: Philadelphia, PA, USA, 1994.
  • [2] B. Bollobás, Modern Graph Theory, Springer: New York, NY, USA, 1998.
  • [3] B. Borovićanin and M. Petrović, On the index of cactuses with n vertices, Publ. Inst. Math 79 (93), 13-18, 2006.
  • [4] Y. Chen, Properties of spectra of graphs and line graphs, Appl. Math. J. Chinese Univ. Ser. B 17 (3), 371-376, 2002.
  • [5] M. Chen and B. Zhou, On the Signless Laplacian Spectral Radius of Cacti, Croat. Chem. Acta 89 (4), 493-498, 2016.
  • [6] L. Collatz and U. Sinogowitz, Spektrcn endlicher Graten, Abh. Math. Scm. Univ. Hamburg 21, 63-77, 1957.
  • [7] L. Cui, Y.-Z. Fan, The signless laplacian spectral radius of graphs with given number of cut vertices, Discuss. Math. Graph Theory 30 (1), 85-93, 2010.
  • [8] D. Cvetković, P. Rowlinson and SK. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (3), 155-171, 2007.
  • [9] D. Cvetkovic, P. Rowlinson, S. Simic, An Introduction to the Theory of Graph Spectra, Cambridge University Press, 2009.
  • [10] L. Feng , Q. Li and X.-D. Zhang, Minimizing the Laplacian spectral radius of trees with given matching number, Linear Multilinear Algebra 55, 199-207, 2007.
  • [11] J. Huang and S. Li, On the Spectral Characterizations of Graphs, Discuss. Math. Graph Theory 37, 729-744, 2017.
  • [12] S. Li and M. Zhang, On the signless Laplacian index of cacti with a given number of pendant vertices, Linear Algebra Appl. 436, 4400-4411, 2012.
  • [13] H. Lin and B. Zhou, Graphs with at most one signless Laplacian eigenvalue exceeding three, Linear Multilinear Algebra 63 (3), 377-383, 2015.
  • [14] L. Lovász and J. Pelikán, On the eigenvalues of trees, Period. Math. Hungar 3, 175- 182, 1973.
  • [15] V. Nikiforov, Merging the A- and Q-spectral theories, Appl. Anal. Discrete Math. 11, 81-107, 2017.
  • [16] V. Nikiforov, G. Pastén, O. Rojo and R.L. Soto, On the $A_{\alpha}$-spectra of trees, Linear Algebra Appl. 520 (3), 286-305, 2017.
  • [17] Y. Shen, L. You, M. Zhang and S. Li, On a conjecture for the signless Laplacian spectral radius of cacti with given matching number, Linear Multilinear Algebra 65 (4), 457-474, 2017.
  • [18] J. Wu, H. Deng and Q. Jiang, On the spectral radius of cacti with k-pendant vertices, Linear Multilinear Algebra 58, 391-398, 2010.
  • [19] T. Wu and H. Zhang, Per-spectral characterizations of some bipartite graphs, Discuss. Math. Graph Theory 37, 935-951, 2017.
  • [20] R. Xing and B. Zhou, On the least eigenvalue of cacti with pendant vertices, Linear Algebra Appl. 438, 2256-2273, 2013.
  • [21] J. Xue, H. Lin, S. Liu and J. Shu, On the $A_{\alpha}$-spectral radius of a graph, Linear Algebra Appl. 550, 105-120, 2018.
  • [22] Y. Yan, C.Wang and S.Wang, The $A_{\alpha}$-spectral radii of trees with specified maximum degree, submitted.
  • [23] A. Yu, M. Lu and F. Tian, On the spectral radius of graphs, Linear Algebra Appl. 387, 41-49, 2004.
  • [24] Bo. Zhou, Signless Laplacian spectral radius and Hamiltonicity, Linear Algebra Appl 423 (3), 566-570, 2010.
There are 24 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Shaohui Wang 0000-0001-6941-3194

Chunxiang Wang 0000-0002-5720-7681

Jia-bao Liu 0000-0002-9620-7692

Publication Date February 4, 2021
Published in Issue Year 2021 Volume: 50 Issue: 1

Cite

APA Wang, S., Wang, C., & Liu, J.-b. (2021). Sharp upper bounds of $A_\alpha$-spectral radius of cacti with given pendant vertices. Hacettepe Journal of Mathematics and Statistics, 50(1), 33-40. https://doi.org/10.15672/hujms.519987
AMA Wang S, Wang C, Liu Jb. Sharp upper bounds of $A_\alpha$-spectral radius of cacti with given pendant vertices. Hacettepe Journal of Mathematics and Statistics. February 2021;50(1):33-40. doi:10.15672/hujms.519987
Chicago Wang, Shaohui, Chunxiang Wang, and Jia-bao Liu. “Sharp Upper Bounds of $A_\alpha$-Spectral Radius of Cacti With Given Pendant Vertices”. Hacettepe Journal of Mathematics and Statistics 50, no. 1 (February 2021): 33-40. https://doi.org/10.15672/hujms.519987.
EndNote Wang S, Wang C, Liu J-b (February 1, 2021) Sharp upper bounds of $A_\alpha$-spectral radius of cacti with given pendant vertices. Hacettepe Journal of Mathematics and Statistics 50 1 33–40.
IEEE S. Wang, C. Wang, and J.-b. Liu, “Sharp upper bounds of $A_\alpha$-spectral radius of cacti with given pendant vertices”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, pp. 33–40, 2021, doi: 10.15672/hujms.519987.
ISNAD Wang, Shaohui et al. “Sharp Upper Bounds of $A_\alpha$-Spectral Radius of Cacti With Given Pendant Vertices”. Hacettepe Journal of Mathematics and Statistics 50/1 (February 2021), 33-40. https://doi.org/10.15672/hujms.519987.
JAMA Wang S, Wang C, Liu J-b. Sharp upper bounds of $A_\alpha$-spectral radius of cacti with given pendant vertices. Hacettepe Journal of Mathematics and Statistics. 2021;50:33–40.
MLA Wang, Shaohui et al. “Sharp Upper Bounds of $A_\alpha$-Spectral Radius of Cacti With Given Pendant Vertices”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, 2021, pp. 33-40, doi:10.15672/hujms.519987.
Vancouver Wang S, Wang C, Liu J-b. Sharp upper bounds of $A_\alpha$-spectral radius of cacti with given pendant vertices. Hacettepe Journal of Mathematics and Statistics. 2021;50(1):33-40.