Research Article
BibTex RIS Cite
Year 2021, Volume: 50 Issue: 1, 14 - 23, 04.02.2021
https://doi.org/10.15672/hujms.558995

Abstract

References

  • [1] Z. Akyuz and S. Halici, On some combinatorial identities involving the terms of generalized Fibonacci and Lucas sequences, Hacet. J. Math. Stat. 42 (4), 431–435, 2013.
  • [2] H. Avron, Counting triangles in large graphs using randomized matrix trace estimation, Proceedings of Kdd-Ldmta’10, 2010.
  • [3] D.J. Karia, K.M. Patil and H.P. Singh, On the sum of powers of square matrices, Oper. Matrices 13 (1), 221–229, 2019.
  • [4] J.K. Merikoski, On the trace and the sum of elements of a matrix, Linear Algebra Appl. 60, 177–185, 1984.
  • [5] V.P. Pugačev, Application of the trace of a matrix to the calculation of its eigenvalues, Ž. Vyčisl. Mat. i Mat. Fiz. 5, 114–116, 1965.
  • [6] A.V. Zarelua, On congruences for the traces of powers of some matrices, Tr. Mat. Inst. Steklova, 263 (Geometriya, Topologiya i Matematicheskaya Fizika. I), 85–105, 2008.

On the trace of powers of square matrices

Year 2021, Volume: 50 Issue: 1, 14 - 23, 04.02.2021
https://doi.org/10.15672/hujms.558995

Abstract

Using Cayley-Hamilton equation for matrices, we obtain a simple formula for trace of powers of a square matrix. The formula becomes simpler in particular cases. As a consequence, we also demonstrate the formula for trace of negative powers of a matrix.

References

  • [1] Z. Akyuz and S. Halici, On some combinatorial identities involving the terms of generalized Fibonacci and Lucas sequences, Hacet. J. Math. Stat. 42 (4), 431–435, 2013.
  • [2] H. Avron, Counting triangles in large graphs using randomized matrix trace estimation, Proceedings of Kdd-Ldmta’10, 2010.
  • [3] D.J. Karia, K.M. Patil and H.P. Singh, On the sum of powers of square matrices, Oper. Matrices 13 (1), 221–229, 2019.
  • [4] J.K. Merikoski, On the trace and the sum of elements of a matrix, Linear Algebra Appl. 60, 177–185, 1984.
  • [5] V.P. Pugačev, Application of the trace of a matrix to the calculation of its eigenvalues, Ž. Vyčisl. Mat. i Mat. Fiz. 5, 114–116, 1965.
  • [6] A.V. Zarelua, On congruences for the traces of powers of some matrices, Tr. Mat. Inst. Steklova, 263 (Geometriya, Topologiya i Matematicheskaya Fizika. I), 85–105, 2008.
There are 6 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Kailash Patil 0000-0002-9884-6914

Publication Date February 4, 2021
Published in Issue Year 2021 Volume: 50 Issue: 1

Cite

APA Patil, K. (2021). On the trace of powers of square matrices. Hacettepe Journal of Mathematics and Statistics, 50(1), 14-23. https://doi.org/10.15672/hujms.558995
AMA Patil K. On the trace of powers of square matrices. Hacettepe Journal of Mathematics and Statistics. February 2021;50(1):14-23. doi:10.15672/hujms.558995
Chicago Patil, Kailash. “On the Trace of Powers of Square Matrices”. Hacettepe Journal of Mathematics and Statistics 50, no. 1 (February 2021): 14-23. https://doi.org/10.15672/hujms.558995.
EndNote Patil K (February 1, 2021) On the trace of powers of square matrices. Hacettepe Journal of Mathematics and Statistics 50 1 14–23.
IEEE K. Patil, “On the trace of powers of square matrices”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, pp. 14–23, 2021, doi: 10.15672/hujms.558995.
ISNAD Patil, Kailash. “On the Trace of Powers of Square Matrices”. Hacettepe Journal of Mathematics and Statistics 50/1 (February 2021), 14-23. https://doi.org/10.15672/hujms.558995.
JAMA Patil K. On the trace of powers of square matrices. Hacettepe Journal of Mathematics and Statistics. 2021;50:14–23.
MLA Patil, Kailash. “On the Trace of Powers of Square Matrices”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, 2021, pp. 14-23, doi:10.15672/hujms.558995.
Vancouver Patil K. On the trace of powers of square matrices. Hacettepe Journal of Mathematics and Statistics. 2021;50(1):14-23.