Year 2021,
Volume: 50 Issue: 4, 1002 - 1011, 06.08.2021
Efruz Özlem Mersin
,
Mustafa Bahşi
References
- [1] P.G. Ciarlet and J.L. Lions, Handbook of numerical analysis, Vol. III: Solution of
equations in $\mathbb{R}^{n}$ (Part 2), 625-778, Elsevier, Amsterdam, 1994.
- [2] P.J. Eberlein, A note on the matrices denoted $B^{*}_{n}$, SIAM J. Appl. Math. 20 (1), 87-92, 1971.
- [3] W.L. Frank, Computing eigenvalues of complex matrices by determinant evaluation
and by methods of Danilewski and Wielandt, J. Soc. Ind. Appl. Math. 6 (4), 378-392,
1958.
- [4] L. Greenberg, Sturm sequences for nonlinear eigenvalue problems, SIAM J. Math.
Anal. 20 (1), 182-199, 1989.
- [5] J.-F. Hake, A remark on Frank matrices, Computing (Wien. Print) 35, 375-379, 1985.
- [6] E. Isaacson and H.B. Keller, Analysis of numerical methods, 2nd edition, John Wiley,
New York, 1966.
- [7] M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical methods: problems and solutions,
Revised Second Edition, New Age International Publishers, New Delhi, 2004.
- [8] E. Kılıç and T. Arıkan, Studying new generalizations of Max-Min matrices with a novel approach, Turkish J. Math. 43, 2010-2024, 2019.
- [9] E.Ö. Mersin, M. Bahşi and A.D. Maden, Some properties of generalized Frank matrices,
Mathematical Sciences and Applications E-Notes 8 (2), 170-177, 2020.
- [10] A. Mostowski and M. Stark, Introduction to higher algebra, Pergamon Press, 1964.
- [11] J.M. Ortega, On Sturm sequences for tridiagonal matrices, J. Assoc. Comput. Mach.
7 (3), 260-263, 1960.
- [12] J. Stoer and R. Bulirsch, Introduction to numerical analysis, Springer-Verlag, New
York, 1980.
- [13] C. Sturm, Analyse d’ un Mémoire sur la résolution des équations numériques, Collected
Works of Charles François Sturm, Birkhäuser Basel, 323-326, 2009.
- [14] C. Sturm, Extrait d’un Mémoire sur L’intécration d’un système d’équations différentielles
linéaires, présenté à l’Académie des sciences, Collected Works of Charles
François Sturm, Birkhäuser Basel, 334-342, 2009.
- [15] C. Sturm, Mémoire sur la résolution des équations numériques, Collected Works of
Charles François Sturm, Birkhäuser Basel, 345-390, 2009.
- [16] J.M. Varah, A generalization of the Frank matrix, SIAM J. Sci. and Stat. Comput. 7
(3), 835-839, 1986.
- [17] J.H. Wilkinson, The algebraic eigenvalue problem, Oxford University Press, 1965.
Sturm theorem for the generalized Frank matrix
Year 2021,
Volume: 50 Issue: 4, 1002 - 1011, 06.08.2021
Efruz Özlem Mersin
,
Mustafa Bahşi
Abstract
One of the popular test matrices for eigenvalue routines is the Frank matrix due to its well-conditioned and poorly conditioned eigenvalues. All the eigenvalues of the Frank matrix are real, positive and different. Sturm Theorem is a very useful tool for computing the eigenvalues of tridiagonal symmetric matrices. In this paper, we apply Sturm Theorem to the generalized Frank matrix which is a special form of the Hessenberg matrix and examine its eigenvalues by using Sturm property. Moreover, we illustrate our results with an example.
References
- [1] P.G. Ciarlet and J.L. Lions, Handbook of numerical analysis, Vol. III: Solution of
equations in $\mathbb{R}^{n}$ (Part 2), 625-778, Elsevier, Amsterdam, 1994.
- [2] P.J. Eberlein, A note on the matrices denoted $B^{*}_{n}$, SIAM J. Appl. Math. 20 (1), 87-92, 1971.
- [3] W.L. Frank, Computing eigenvalues of complex matrices by determinant evaluation
and by methods of Danilewski and Wielandt, J. Soc. Ind. Appl. Math. 6 (4), 378-392,
1958.
- [4] L. Greenberg, Sturm sequences for nonlinear eigenvalue problems, SIAM J. Math.
Anal. 20 (1), 182-199, 1989.
- [5] J.-F. Hake, A remark on Frank matrices, Computing (Wien. Print) 35, 375-379, 1985.
- [6] E. Isaacson and H.B. Keller, Analysis of numerical methods, 2nd edition, John Wiley,
New York, 1966.
- [7] M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical methods: problems and solutions,
Revised Second Edition, New Age International Publishers, New Delhi, 2004.
- [8] E. Kılıç and T. Arıkan, Studying new generalizations of Max-Min matrices with a novel approach, Turkish J. Math. 43, 2010-2024, 2019.
- [9] E.Ö. Mersin, M. Bahşi and A.D. Maden, Some properties of generalized Frank matrices,
Mathematical Sciences and Applications E-Notes 8 (2), 170-177, 2020.
- [10] A. Mostowski and M. Stark, Introduction to higher algebra, Pergamon Press, 1964.
- [11] J.M. Ortega, On Sturm sequences for tridiagonal matrices, J. Assoc. Comput. Mach.
7 (3), 260-263, 1960.
- [12] J. Stoer and R. Bulirsch, Introduction to numerical analysis, Springer-Verlag, New
York, 1980.
- [13] C. Sturm, Analyse d’ un Mémoire sur la résolution des équations numériques, Collected
Works of Charles François Sturm, Birkhäuser Basel, 323-326, 2009.
- [14] C. Sturm, Extrait d’un Mémoire sur L’intécration d’un système d’équations différentielles
linéaires, présenté à l’Académie des sciences, Collected Works of Charles
François Sturm, Birkhäuser Basel, 334-342, 2009.
- [15] C. Sturm, Mémoire sur la résolution des équations numériques, Collected Works of
Charles François Sturm, Birkhäuser Basel, 345-390, 2009.
- [16] J.M. Varah, A generalization of the Frank matrix, SIAM J. Sci. and Stat. Comput. 7
(3), 835-839, 1986.
- [17] J.H. Wilkinson, The algebraic eigenvalue problem, Oxford University Press, 1965.