Research Article
BibTex RIS Cite
Year 2021, Volume: 50 Issue: 4, 1002 - 1011, 06.08.2021
https://doi.org/10.15672/hujms.773281

Abstract

References

  • [1] P.G. Ciarlet and J.L. Lions, Handbook of numerical analysis, Vol. III: Solution of equations in $\mathbb{R}^{n}$ (Part 2), 625-778, Elsevier, Amsterdam, 1994.
  • [2] P.J. Eberlein, A note on the matrices denoted $B^{*}_{n}$, SIAM J. Appl. Math. 20 (1), 87-92, 1971.
  • [3] W.L. Frank, Computing eigenvalues of complex matrices by determinant evaluation and by methods of Danilewski and Wielandt, J. Soc. Ind. Appl. Math. 6 (4), 378-392, 1958.
  • [4] L. Greenberg, Sturm sequences for nonlinear eigenvalue problems, SIAM J. Math. Anal. 20 (1), 182-199, 1989.
  • [5] J.-F. Hake, A remark on Frank matrices, Computing (Wien. Print) 35, 375-379, 1985.
  • [6] E. Isaacson and H.B. Keller, Analysis of numerical methods, 2nd edition, John Wiley, New York, 1966.
  • [7] M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical methods: problems and solutions, Revised Second Edition, New Age International Publishers, New Delhi, 2004.
  • [8] E. Kılıç and T. Arıkan, Studying new generalizations of Max-Min matrices with a novel approach, Turkish J. Math. 43, 2010-2024, 2019.
  • [9] E.Ö. Mersin, M. Bahşi and A.D. Maden, Some properties of generalized Frank matrices, Mathematical Sciences and Applications E-Notes 8 (2), 170-177, 2020.
  • [10] A. Mostowski and M. Stark, Introduction to higher algebra, Pergamon Press, 1964.
  • [11] J.M. Ortega, On Sturm sequences for tridiagonal matrices, J. Assoc. Comput. Mach. 7 (3), 260-263, 1960.
  • [12] J. Stoer and R. Bulirsch, Introduction to numerical analysis, Springer-Verlag, New York, 1980.
  • [13] C. Sturm, Analyse d’ un Mémoire sur la résolution des équations numériques, Collected Works of Charles François Sturm, Birkhäuser Basel, 323-326, 2009.
  • [14] C. Sturm, Extrait d’un Mémoire sur L’intécration d’un système d’équations différentielles linéaires, présenté à l’Académie des sciences, Collected Works of Charles François Sturm, Birkhäuser Basel, 334-342, 2009.
  • [15] C. Sturm, Mémoire sur la résolution des équations numériques, Collected Works of Charles François Sturm, Birkhäuser Basel, 345-390, 2009.
  • [16] J.M. Varah, A generalization of the Frank matrix, SIAM J. Sci. and Stat. Comput. 7 (3), 835-839, 1986.
  • [17] J.H. Wilkinson, The algebraic eigenvalue problem, Oxford University Press, 1965.

Sturm theorem for the generalized Frank matrix

Year 2021, Volume: 50 Issue: 4, 1002 - 1011, 06.08.2021
https://doi.org/10.15672/hujms.773281

Abstract

One of the popular test matrices for eigenvalue routines is the Frank matrix due to its well-conditioned and poorly conditioned eigenvalues. All the eigenvalues of the Frank matrix are real, positive and different. Sturm Theorem is a very useful tool for computing the eigenvalues of tridiagonal symmetric matrices. In this paper, we apply Sturm Theorem to the generalized Frank matrix which is a special form of the Hessenberg matrix and examine its eigenvalues by using Sturm property. Moreover, we illustrate our results with an example.

References

  • [1] P.G. Ciarlet and J.L. Lions, Handbook of numerical analysis, Vol. III: Solution of equations in $\mathbb{R}^{n}$ (Part 2), 625-778, Elsevier, Amsterdam, 1994.
  • [2] P.J. Eberlein, A note on the matrices denoted $B^{*}_{n}$, SIAM J. Appl. Math. 20 (1), 87-92, 1971.
  • [3] W.L. Frank, Computing eigenvalues of complex matrices by determinant evaluation and by methods of Danilewski and Wielandt, J. Soc. Ind. Appl. Math. 6 (4), 378-392, 1958.
  • [4] L. Greenberg, Sturm sequences for nonlinear eigenvalue problems, SIAM J. Math. Anal. 20 (1), 182-199, 1989.
  • [5] J.-F. Hake, A remark on Frank matrices, Computing (Wien. Print) 35, 375-379, 1985.
  • [6] E. Isaacson and H.B. Keller, Analysis of numerical methods, 2nd edition, John Wiley, New York, 1966.
  • [7] M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical methods: problems and solutions, Revised Second Edition, New Age International Publishers, New Delhi, 2004.
  • [8] E. Kılıç and T. Arıkan, Studying new generalizations of Max-Min matrices with a novel approach, Turkish J. Math. 43, 2010-2024, 2019.
  • [9] E.Ö. Mersin, M. Bahşi and A.D. Maden, Some properties of generalized Frank matrices, Mathematical Sciences and Applications E-Notes 8 (2), 170-177, 2020.
  • [10] A. Mostowski and M. Stark, Introduction to higher algebra, Pergamon Press, 1964.
  • [11] J.M. Ortega, On Sturm sequences for tridiagonal matrices, J. Assoc. Comput. Mach. 7 (3), 260-263, 1960.
  • [12] J. Stoer and R. Bulirsch, Introduction to numerical analysis, Springer-Verlag, New York, 1980.
  • [13] C. Sturm, Analyse d’ un Mémoire sur la résolution des équations numériques, Collected Works of Charles François Sturm, Birkhäuser Basel, 323-326, 2009.
  • [14] C. Sturm, Extrait d’un Mémoire sur L’intécration d’un système d’équations différentielles linéaires, présenté à l’Académie des sciences, Collected Works of Charles François Sturm, Birkhäuser Basel, 334-342, 2009.
  • [15] C. Sturm, Mémoire sur la résolution des équations numériques, Collected Works of Charles François Sturm, Birkhäuser Basel, 345-390, 2009.
  • [16] J.M. Varah, A generalization of the Frank matrix, SIAM J. Sci. and Stat. Comput. 7 (3), 835-839, 1986.
  • [17] J.H. Wilkinson, The algebraic eigenvalue problem, Oxford University Press, 1965.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Efruz Özlem Mersin 0000-0001-6260-9063

Mustafa Bahşi 0000-0002-6356-6592

Publication Date August 6, 2021
Published in Issue Year 2021 Volume: 50 Issue: 4

Cite

APA Mersin, E. Ö., & Bahşi, M. (2021). Sturm theorem for the generalized Frank matrix. Hacettepe Journal of Mathematics and Statistics, 50(4), 1002-1011. https://doi.org/10.15672/hujms.773281
AMA Mersin EÖ, Bahşi M. Sturm theorem for the generalized Frank matrix. Hacettepe Journal of Mathematics and Statistics. August 2021;50(4):1002-1011. doi:10.15672/hujms.773281
Chicago Mersin, Efruz Özlem, and Mustafa Bahşi. “Sturm Theorem for the Generalized Frank Matrix”. Hacettepe Journal of Mathematics and Statistics 50, no. 4 (August 2021): 1002-11. https://doi.org/10.15672/hujms.773281.
EndNote Mersin EÖ, Bahşi M (August 1, 2021) Sturm theorem for the generalized Frank matrix. Hacettepe Journal of Mathematics and Statistics 50 4 1002–1011.
IEEE E. Ö. Mersin and M. Bahşi, “Sturm theorem for the generalized Frank matrix”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, pp. 1002–1011, 2021, doi: 10.15672/hujms.773281.
ISNAD Mersin, Efruz Özlem - Bahşi, Mustafa. “Sturm Theorem for the Generalized Frank Matrix”. Hacettepe Journal of Mathematics and Statistics 50/4 (August 2021), 1002-1011. https://doi.org/10.15672/hujms.773281.
JAMA Mersin EÖ, Bahşi M. Sturm theorem for the generalized Frank matrix. Hacettepe Journal of Mathematics and Statistics. 2021;50:1002–1011.
MLA Mersin, Efruz Özlem and Mustafa Bahşi. “Sturm Theorem for the Generalized Frank Matrix”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, 2021, pp. 1002-11, doi:10.15672/hujms.773281.
Vancouver Mersin EÖ, Bahşi M. Sturm theorem for the generalized Frank matrix. Hacettepe Journal of Mathematics and Statistics. 2021;50(4):1002-11.