Year 2021,
Volume: 50 Issue: 6, 1855 - 1876, 14.12.2021
Zahra Zandi
,
Hossein Bevrani
Reza Arabi
References
- 1] S.E. Ahmed, Shrinkage preliminary test estimation in multivariate normal distributions, J. Stat. Comput. Simul. 43 (3-4), 177-195, 1992.
- [2] S.E. Ahmed, Penalty, Shrinkage and Pretest Strategies: Variable Selection and Estimation, Springer, 2014.
- [3] J. Aitchison and S.D. Silvey, Maximum-likelihood estimation of parameters subject to
restraints, Ann. Math. Stat. 29 (3), 813-828, 1958.
- [4] Y. Al-Taweel and Z. Algamal, Some almost unbiased ridge regression estimators for
the zero-inflated negative binomial regression model, Period. Eng. Nat. Sci. 8 (1),
248-255, 2020.
- [5] R. Arabi Belaghi, M. Arashi and S.M.M. Tabatabaey, Improved estimators of the
distribution function based on lower record values, Statist. Papers 56 (2), 453-477,
2015.
- [6] M. Arashi, Preliminary test and Stein estimations in simultaneous linear equations,
Linear Algebra Appl. 436 (5), 1195-1211, 2012.
- [7] M. Arashi, B.G. Kibria, M. Norouzirad and S. Nadarajah, Improved preliminary test
and Stein-rule Liu estimators for the ill-conditioned elliptical linear regression model,
J. Multivariate Anal. 126, 53-74, 2014.
- [8] C.C. Astuti and A.D Mulyanto, Estimation parameters and modelling zero inflated
negative binomial, CAUCHY: Journal Matematika Murni dan Aplikasi 4 (3), 115-119,
2016.
- [9] T.A. Bancroft, On biases in estimation due to the use of preliminary tests of significance, Ann. Math. Stat. 15 (2), 190-204, 1944.
- [10] R.R. Davidson and W.E. Lever, The limiting distribution of the likelihood ratio statistic under a class of local alternatives, Sankhya A 32 (2), 209-224, 1970.
- [11] W.H. Greene, Accounting for excess zeros and sample selection in Poisson and negative binomial regression models, Working Paper 94-10, New York University, New
York, 1994.
- [12] C.C. Heyde, Quasi-Likelihood and its Application: A General Approach to Optimal
Parameter Estimation, Springer Science and Business Media, 2008.
- [13] J.M. Hilbe, Negative Binomial Regression, Cambridge University Press, 2011.
- [14] S. Hossain, S.E. Ahmed and K.A. Doksum, Shrinkage, pretest, and penalty estimators
in generalized linear models, Stat. Methodol. 24, 52-68, 2015.
- [15] S. Hossain and H.A. Howlader, Estimation techniques for regression model with zeroinflated Poisson data, International Journal of Statistics and Probability 4 (4), 64-76,
2015.
- [16] G.G. Judge and M.E. Bock, The Statistical Implication of Pre-Test and Stein-Rule
Estimators in Econometrics, North-Holland, 1978.
- [17] S. Lisawadi, S.E. Ahmed and O. Reangsephet, Post estimation and prediction strategies in negative binomial regression model, Int. J. Simul. Model.,
Doi:10.1080/02286203.2020.1792601, 2020.
- [18] S. Lisawadi, M. Kashif Ali Shah and S.E. Ahmed, Model selection and post estimation
based on a pretest for logistic regression models, J. Stat. Comput. Simul. 86 (17),
3495-3511, 2016.
- [19] O. Reangsephet, S. Lisawadi and S.E. Ahmed, Improving estimation of regression
parameters in negative binomial regression model, in: Proceedings of International
Conference on Management Science and Engineering Management, Springer, 265-
275, 2018.
- [20] O. Reangsephet, S. Lisawadi and S.E. Ahmed, Adaptive estimation strategies in
gamma regression model, J. Stat. Theory Pract. 14 (1), 1-27, 2020.
- [21] S.E. Saffari and R. Adnan, Parameter estimation on zero-inflated negative binomial
regression with right truncated data, Sains Malaysiana 41, 1483-1487, 2012.
- [22] A.M.E. Saleh, Theory of Preliminary Test and Stein-Type Estimation with Applications, John Wiley and Sons, 2006.
- [23] M.L. Sheu, T.W. Hu, T.E. Keeler, M. Ong and H.Y. Sung, The effect of a major
cigarette price change on smoking behavior in California: a zero-inflated negative
binomial model, Health Econ. 13 (8), 781-791, 2004.
- [24] S. So, D.H. Lee and B.C. Jung, An alternative bivariate zero-inflated negative binomial
regression model using a copula, Econom. Lett. 113 (2), 183-185, 2011.
- [25] C. Stein, The admissibility of Hotelling’s T2-test, Ann. Math. Stat. 27 (3), 616-623, 1956.
- [26] J.R. Thompson, Some shrinkage techniques for estimating the mean, J. Amer. Statist.
Assoc. 63 (321), 113-122, 1968.
- [27] P. Wang, A bivariate zero-inflated negative binomial regression model for count data
with excess zeros, Econom. Lett. 78 (3), 373-378, 2003.
- [28] P. Wang and J.D. Alba, A zero-inflated negative binomial regression model with hidden
Markov chain, Econom. Lett. 92 (2), 209-213, 2006.
- [29] B. Yuzbasi and Y. Asar, Ridge type estimation in the zero-inflated negative binomial
regression, in Econometrics: Methods and Applications, 93-104, 2018.
- [30] Z. Zandi, H. Bevrani and R. Arabi Belaghi, Using shrinkage strategies to estimate
fixed effects in zero-inflated negative binomial mixed model, Comm. Statist. Simulation
Comput., Doi:10.1080/03610918.2021.1928704, 2021.
Improved shrinkage estimators in zero-inflated negative binomial regression model
Year 2021,
Volume: 50 Issue: 6, 1855 - 1876, 14.12.2021
Zahra Zandi
,
Hossein Bevrani
Reza Arabi
Abstract
Zero-inflated negative binomial model is an appropriate choice to model count response variables with excessive zeros and over-dispersion simultaneously. This paper addressed parameter estimation in the zero-inflated negative binomial model when there are many parameters, so that some of them have not influence on the response variable. We proposed parameter estimation based on the linear shrinkage, pretest, shrinkage pretest, Stein-type, and positive Stein-type estimators. We obtained the asymptotic distributional biases and risks of the suggested estimators theoretically. We also conducted a Monte Carlo simulation study to compare the performance of each estimator with the unrestricted estimator using simulated relative efficiency (SRE) criterion. The results reveal that the SREs of proposed estimators are higher than the unrestricted estimator. The suggested estimators were applied to the wildlife fish data to appraise their performance.
References
- 1] S.E. Ahmed, Shrinkage preliminary test estimation in multivariate normal distributions, J. Stat. Comput. Simul. 43 (3-4), 177-195, 1992.
- [2] S.E. Ahmed, Penalty, Shrinkage and Pretest Strategies: Variable Selection and Estimation, Springer, 2014.
- [3] J. Aitchison and S.D. Silvey, Maximum-likelihood estimation of parameters subject to
restraints, Ann. Math. Stat. 29 (3), 813-828, 1958.
- [4] Y. Al-Taweel and Z. Algamal, Some almost unbiased ridge regression estimators for
the zero-inflated negative binomial regression model, Period. Eng. Nat. Sci. 8 (1),
248-255, 2020.
- [5] R. Arabi Belaghi, M. Arashi and S.M.M. Tabatabaey, Improved estimators of the
distribution function based on lower record values, Statist. Papers 56 (2), 453-477,
2015.
- [6] M. Arashi, Preliminary test and Stein estimations in simultaneous linear equations,
Linear Algebra Appl. 436 (5), 1195-1211, 2012.
- [7] M. Arashi, B.G. Kibria, M. Norouzirad and S. Nadarajah, Improved preliminary test
and Stein-rule Liu estimators for the ill-conditioned elliptical linear regression model,
J. Multivariate Anal. 126, 53-74, 2014.
- [8] C.C. Astuti and A.D Mulyanto, Estimation parameters and modelling zero inflated
negative binomial, CAUCHY: Journal Matematika Murni dan Aplikasi 4 (3), 115-119,
2016.
- [9] T.A. Bancroft, On biases in estimation due to the use of preliminary tests of significance, Ann. Math. Stat. 15 (2), 190-204, 1944.
- [10] R.R. Davidson and W.E. Lever, The limiting distribution of the likelihood ratio statistic under a class of local alternatives, Sankhya A 32 (2), 209-224, 1970.
- [11] W.H. Greene, Accounting for excess zeros and sample selection in Poisson and negative binomial regression models, Working Paper 94-10, New York University, New
York, 1994.
- [12] C.C. Heyde, Quasi-Likelihood and its Application: A General Approach to Optimal
Parameter Estimation, Springer Science and Business Media, 2008.
- [13] J.M. Hilbe, Negative Binomial Regression, Cambridge University Press, 2011.
- [14] S. Hossain, S.E. Ahmed and K.A. Doksum, Shrinkage, pretest, and penalty estimators
in generalized linear models, Stat. Methodol. 24, 52-68, 2015.
- [15] S. Hossain and H.A. Howlader, Estimation techniques for regression model with zeroinflated Poisson data, International Journal of Statistics and Probability 4 (4), 64-76,
2015.
- [16] G.G. Judge and M.E. Bock, The Statistical Implication of Pre-Test and Stein-Rule
Estimators in Econometrics, North-Holland, 1978.
- [17] S. Lisawadi, S.E. Ahmed and O. Reangsephet, Post estimation and prediction strategies in negative binomial regression model, Int. J. Simul. Model.,
Doi:10.1080/02286203.2020.1792601, 2020.
- [18] S. Lisawadi, M. Kashif Ali Shah and S.E. Ahmed, Model selection and post estimation
based on a pretest for logistic regression models, J. Stat. Comput. Simul. 86 (17),
3495-3511, 2016.
- [19] O. Reangsephet, S. Lisawadi and S.E. Ahmed, Improving estimation of regression
parameters in negative binomial regression model, in: Proceedings of International
Conference on Management Science and Engineering Management, Springer, 265-
275, 2018.
- [20] O. Reangsephet, S. Lisawadi and S.E. Ahmed, Adaptive estimation strategies in
gamma regression model, J. Stat. Theory Pract. 14 (1), 1-27, 2020.
- [21] S.E. Saffari and R. Adnan, Parameter estimation on zero-inflated negative binomial
regression with right truncated data, Sains Malaysiana 41, 1483-1487, 2012.
- [22] A.M.E. Saleh, Theory of Preliminary Test and Stein-Type Estimation with Applications, John Wiley and Sons, 2006.
- [23] M.L. Sheu, T.W. Hu, T.E. Keeler, M. Ong and H.Y. Sung, The effect of a major
cigarette price change on smoking behavior in California: a zero-inflated negative
binomial model, Health Econ. 13 (8), 781-791, 2004.
- [24] S. So, D.H. Lee and B.C. Jung, An alternative bivariate zero-inflated negative binomial
regression model using a copula, Econom. Lett. 113 (2), 183-185, 2011.
- [25] C. Stein, The admissibility of Hotelling’s T2-test, Ann. Math. Stat. 27 (3), 616-623, 1956.
- [26] J.R. Thompson, Some shrinkage techniques for estimating the mean, J. Amer. Statist.
Assoc. 63 (321), 113-122, 1968.
- [27] P. Wang, A bivariate zero-inflated negative binomial regression model for count data
with excess zeros, Econom. Lett. 78 (3), 373-378, 2003.
- [28] P. Wang and J.D. Alba, A zero-inflated negative binomial regression model with hidden
Markov chain, Econom. Lett. 92 (2), 209-213, 2006.
- [29] B. Yuzbasi and Y. Asar, Ridge type estimation in the zero-inflated negative binomial
regression, in Econometrics: Methods and Applications, 93-104, 2018.
- [30] Z. Zandi, H. Bevrani and R. Arabi Belaghi, Using shrinkage strategies to estimate
fixed effects in zero-inflated negative binomial mixed model, Comm. Statist. Simulation
Comput., Doi:10.1080/03610918.2021.1928704, 2021.