Actions and semi-direct products in categories of groups with action
Year 2023,
Volume: 52 Issue: 1, 103 - 113, 15.02.2023
Tamar Datuashvili
,
Tunçar Şahan
Abstract
Derived actions in the category of groups with action on itself $\mathbf{Gr}^{\bullet}$ are defined and described. This category plays a crucial role in the solution of two problems of Loday stated in the literature. A full subcategory of reduced groups with action $\mathbf{rGr}^{\bullet}$ of $\mathbf{Gr}^{\bullet}$ is introduced, which is not a category of interest but has some properties, which can be applied in the investigation of action representability in this category; these properties are similar to those, which were used in the construction of universal strict general actors in the category of interest. Semi-direct product constructions are given in $\mathbf{Gr}^{\bullet}$ and $\mathbf{rGr}^{\bullet}$ and it is proved that an action is a derived action in $\mathbf{Gr}^{\bullet}$ (resp. $\mathbf{rGr}^{\bullet}$) if and only if the corresponding semi-direct product is an object of $\mathbf{Gr}^{\bullet}$ (resp. $\mathbf{rGr}^{\bullet}$). The results obtained in this paper will be applied in the forthcoming paper on the representability of actions in the category $\mathbf{rGr}^{\bullet}$.
References
- [1] F. Borceux, G.Z. Janelidze and G.M. Kelly, Internal object actions, Comment. Math.
Univ. Carolin. 46 (2), 235-255, 2005.
- [2] Y. Boyacı, J.M. Casas, T. Datuashvili and E.Ö. Uslu, Actions in modified categories
of interest with application to crossed modules, Theor. Appl. Categ. 30, 882-908, 2015.
- [3] J.M. Casas, T. Datuashvili and M. Ladra, Actors in categories of interest,
arXiv:0702574v2 [math.CT], 2007.
- [4] J.M. Casas, T. Datuashvili and M. Ladra, Universal strict general actors and actors
in categories of interest, Appl. Categor. Struct. 18, 85-114, 2010.
- [5] T. Datuashvili, Central series for groups with action and Leibniz algebras, Georgian
Math. J. 9 (4), 671-682, 2002.
- [6] T. Datuashvili, Witt’s theorem for groups with action and free Leibniz algebras, Georgian
Math. J. 11 (4), 691-712, 2004.
- [7] T. Datuashvili, Categorical, homological, and homotopical properties of algebraic objects,
J. Math. Sci. 225 (3), 383-533, 2017.
- [8] T. Datuashvili and T. Şahan, Pentactions and action representability in the category
of reduced groups with action, Submitted for publication, arXiv:2203.05345v2
[math.CT], 2022.
- [9] A.G. Kurosh, Lectures in General Algebra (Translated from Russian), Pergamon
Press, Oxford-Edinburgh-New York, 1965.
- [10] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz,
Enseign. Math. (2) 39 (3-4), 269-293, 1993.
- [11] J.-L. Loday, Algebraic K-theory and the conjectural Leibniz K-theory, K-Theory 30
(2), 105-127, 2003.
- [12] G. Orzech, Obstruction theory in algebraic categories, I, J. Pure. Appl. Algebra 2 (4),
287-314, 1972.
- [13] G. Orzech, Obstruction theory in algebraic categories, II, J. Pure. Appl. Algebra 2
(4), 315-340, 1972.
- [14] T. Porter, Extensions, crossed modules and internal categories in categories of groups
with operations, P. Edinburgh Math. Soc. 30 (3), 373-381, 1987.
Year 2023,
Volume: 52 Issue: 1, 103 - 113, 15.02.2023
Tamar Datuashvili
,
Tunçar Şahan
References
- [1] F. Borceux, G.Z. Janelidze and G.M. Kelly, Internal object actions, Comment. Math.
Univ. Carolin. 46 (2), 235-255, 2005.
- [2] Y. Boyacı, J.M. Casas, T. Datuashvili and E.Ö. Uslu, Actions in modified categories
of interest with application to crossed modules, Theor. Appl. Categ. 30, 882-908, 2015.
- [3] J.M. Casas, T. Datuashvili and M. Ladra, Actors in categories of interest,
arXiv:0702574v2 [math.CT], 2007.
- [4] J.M. Casas, T. Datuashvili and M. Ladra, Universal strict general actors and actors
in categories of interest, Appl. Categor. Struct. 18, 85-114, 2010.
- [5] T. Datuashvili, Central series for groups with action and Leibniz algebras, Georgian
Math. J. 9 (4), 671-682, 2002.
- [6] T. Datuashvili, Witt’s theorem for groups with action and free Leibniz algebras, Georgian
Math. J. 11 (4), 691-712, 2004.
- [7] T. Datuashvili, Categorical, homological, and homotopical properties of algebraic objects,
J. Math. Sci. 225 (3), 383-533, 2017.
- [8] T. Datuashvili and T. Şahan, Pentactions and action representability in the category
of reduced groups with action, Submitted for publication, arXiv:2203.05345v2
[math.CT], 2022.
- [9] A.G. Kurosh, Lectures in General Algebra (Translated from Russian), Pergamon
Press, Oxford-Edinburgh-New York, 1965.
- [10] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz,
Enseign. Math. (2) 39 (3-4), 269-293, 1993.
- [11] J.-L. Loday, Algebraic K-theory and the conjectural Leibniz K-theory, K-Theory 30
(2), 105-127, 2003.
- [12] G. Orzech, Obstruction theory in algebraic categories, I, J. Pure. Appl. Algebra 2 (4),
287-314, 1972.
- [13] G. Orzech, Obstruction theory in algebraic categories, II, J. Pure. Appl. Algebra 2
(4), 315-340, 1972.
- [14] T. Porter, Extensions, crossed modules and internal categories in categories of groups
with operations, P. Edinburgh Math. Soc. 30 (3), 373-381, 1987.