Year 2023,
Volume: 52 Issue: 2, 445 - 458, 31.03.2023
Sibel Koparal
,
Neşe Ömür
,
Laid Elkhiri
References
- [1] N.H. Abel, Untersuchungen über die Reihe $1+\frac{ m}{1}x+\frac{m(m-1)}{1.2}x^{2}+\frac{m(m-1)(m-2)}{1.2.3} x^{3}+...$ J. Reine Angew. Math. 1, 311-339, 1826.
- [2] T-X. Cai and A. Granville, On the residues of binomial coefficients and their products
modulo prime powers, Acta Math. Sin., Engl. Ser. 18, 277-288, 2002.
- [3] V. Kac and P. Cheung, Quantum Calculus, Springer-Verlag, New York, 2002.
- [4] T. Kim, Sums of powers of consecutive q− integers, Adv. Stud. Contemp. Math.
(Kyung-shang) 9 (1), 15-18, 2004.
- [5] T. Kim, A note on exploring the sums of powers of consecutive q−integers, Adv. Stud.
Contemp. Math. (Kyungshang) 11 (1), 137-140, 2005.
- [6] T. Kim, C.S. Ryoo, L.C. Jang, and S. H. Rim, Exploring the sums of powers of
consecutive q−integers, Internat. J. of Math. Ed. Sci. Tech. 36 (8), 947-956, 2005.
- [7] C. Kızılateş and N. Tuğlu, Some combinatorial identities of q−harmonic and
q−hyperharmonic numbers, Communications in Math. and Appl. 6 (2), 33-40, 2015.
- [8] J. Liu, H. Pan and Y. Zhang, A generalization of Morley’s congruence, Adv. Differ.
Equ. 2015 (254), 1-7, 2015.
- [9] H. Pan, On a generalization of Carlitz’s congruence, Int. J. Mod. Math. 4, 87-93,
2009.
- [10] Y. Simsek, D. Kim, T. Kim, and S.-H. Rim, A note on the sums of powers of consecutive
q−integers, J. Appl. Funct. Differ. Equ. 1 (1), 81-88, 2006.
- [11] Z.W. Sun, Arithmetic theory of harmonic numbers, Proc. Amer. Maths. Soc. 140 (2),
415-428, 2012.
Some congruences with $q-$binomial coefficients and $q-$harmonic numbers
Year 2023,
Volume: 52 Issue: 2, 445 - 458, 31.03.2023
Sibel Koparal
,
Neşe Ömür
,
Laid Elkhiri
Abstract
In this paper, considering $q-$analogues and $q-$combinatorial identities, we gave some congruences including $q-$binomial coefficients and $q-$ harmonic numbers. For example, for any prime number $p$ and $\alpha \in\mathbb{Z}^{+},$
\[
\sum\limits_{k=1}^{p-1}\left( -1\right) ^{k}q^{-\alpha pk+\binom{k+1}{2}
+k}\left[ k\right] _{q}{\alpha p-1 \brack k}_{q}
\]
\[
\equiv\frac{q^{1-\alpha p}}{(1-q^{2})^{2}}\left( q^{\alpha p+2}\left(
q^{p}-2\right) +q^{\alpha p}-q^{p}+q^{2}\right) \left[ p-1\right] _{q} %
\pmod{\left[ p\right] _{q}^{3}}.
\]
References
- [1] N.H. Abel, Untersuchungen über die Reihe $1+\frac{ m}{1}x+\frac{m(m-1)}{1.2}x^{2}+\frac{m(m-1)(m-2)}{1.2.3} x^{3}+...$ J. Reine Angew. Math. 1, 311-339, 1826.
- [2] T-X. Cai and A. Granville, On the residues of binomial coefficients and their products
modulo prime powers, Acta Math. Sin., Engl. Ser. 18, 277-288, 2002.
- [3] V. Kac and P. Cheung, Quantum Calculus, Springer-Verlag, New York, 2002.
- [4] T. Kim, Sums of powers of consecutive q− integers, Adv. Stud. Contemp. Math.
(Kyung-shang) 9 (1), 15-18, 2004.
- [5] T. Kim, A note on exploring the sums of powers of consecutive q−integers, Adv. Stud.
Contemp. Math. (Kyungshang) 11 (1), 137-140, 2005.
- [6] T. Kim, C.S. Ryoo, L.C. Jang, and S. H. Rim, Exploring the sums of powers of
consecutive q−integers, Internat. J. of Math. Ed. Sci. Tech. 36 (8), 947-956, 2005.
- [7] C. Kızılateş and N. Tuğlu, Some combinatorial identities of q−harmonic and
q−hyperharmonic numbers, Communications in Math. and Appl. 6 (2), 33-40, 2015.
- [8] J. Liu, H. Pan and Y. Zhang, A generalization of Morley’s congruence, Adv. Differ.
Equ. 2015 (254), 1-7, 2015.
- [9] H. Pan, On a generalization of Carlitz’s congruence, Int. J. Mod. Math. 4, 87-93,
2009.
- [10] Y. Simsek, D. Kim, T. Kim, and S.-H. Rim, A note on the sums of powers of consecutive
q−integers, J. Appl. Funct. Differ. Equ. 1 (1), 81-88, 2006.
- [11] Z.W. Sun, Arithmetic theory of harmonic numbers, Proc. Amer. Maths. Soc. 140 (2),
415-428, 2012.