Research Article
BibTex RIS Cite
Year 2023, Volume: 52 Issue: 2, 445 - 458, 31.03.2023

Abstract

References

  • [1] N.H. Abel, Untersuchungen über die Reihe $1+\frac{ m}{1}x+\frac{m(m-1)}{1.2}x^{2}+\frac{m(m-1)(m-2)}{1.2.3} x^{3}+...$ J. Reine Angew. Math. 1, 311-339, 1826.
  • [2] T-X. Cai and A. Granville, On the residues of binomial coefficients and their products modulo prime powers, Acta Math. Sin., Engl. Ser. 18, 277-288, 2002.
  • [3] V. Kac and P. Cheung, Quantum Calculus, Springer-Verlag, New York, 2002.
  • [4] T. Kim, Sums of powers of consecutive q− integers, Adv. Stud. Contemp. Math. (Kyung-shang) 9 (1), 15-18, 2004.
  • [5] T. Kim, A note on exploring the sums of powers of consecutive q−integers, Adv. Stud. Contemp. Math. (Kyungshang) 11 (1), 137-140, 2005.
  • [6] T. Kim, C.S. Ryoo, L.C. Jang, and S. H. Rim, Exploring the sums of powers of consecutive q−integers, Internat. J. of Math. Ed. Sci. Tech. 36 (8), 947-956, 2005.
  • [7] C. Kızılateş and N. Tuğlu, Some combinatorial identities of q−harmonic and q−hyperharmonic numbers, Communications in Math. and Appl. 6 (2), 33-40, 2015.
  • [8] J. Liu, H. Pan and Y. Zhang, A generalization of Morley’s congruence, Adv. Differ. Equ. 2015 (254), 1-7, 2015.
  • [9] H. Pan, On a generalization of Carlitz’s congruence, Int. J. Mod. Math. 4, 87-93, 2009.
  • [10] Y. Simsek, D. Kim, T. Kim, and S.-H. Rim, A note on the sums of powers of consecutive q−integers, J. Appl. Funct. Differ. Equ. 1 (1), 81-88, 2006.
  • [11] Z.W. Sun, Arithmetic theory of harmonic numbers, Proc. Amer. Maths. Soc. 140 (2), 415-428, 2012.

Some congruences with $q-$binomial coefficients and $q-$harmonic numbers

Year 2023, Volume: 52 Issue: 2, 445 - 458, 31.03.2023

Abstract

In this paper, considering $q-$analogues and $q-$combinatorial identities, we gave some congruences including $q-$binomial coefficients and $q-$ harmonic numbers. For example, for any prime number $p$ and $\alpha \in\mathbb{Z}^{+},$
\[
\sum\limits_{k=1}^{p-1}\left( -1\right) ^{k}q^{-\alpha pk+\binom{k+1}{2}
+k}\left[ k\right] _{q}{\alpha p-1 \brack k}_{q}
\]

\[
\equiv\frac{q^{1-\alpha p}}{(1-q^{2})^{2}}\left( q^{\alpha p+2}\left(
q^{p}-2\right) +q^{\alpha p}-q^{p}+q^{2}\right) \left[ p-1\right] _{q} %
\pmod{\left[ p\right] _{q}^{3}}.
\]

References

  • [1] N.H. Abel, Untersuchungen über die Reihe $1+\frac{ m}{1}x+\frac{m(m-1)}{1.2}x^{2}+\frac{m(m-1)(m-2)}{1.2.3} x^{3}+...$ J. Reine Angew. Math. 1, 311-339, 1826.
  • [2] T-X. Cai and A. Granville, On the residues of binomial coefficients and their products modulo prime powers, Acta Math. Sin., Engl. Ser. 18, 277-288, 2002.
  • [3] V. Kac and P. Cheung, Quantum Calculus, Springer-Verlag, New York, 2002.
  • [4] T. Kim, Sums of powers of consecutive q− integers, Adv. Stud. Contemp. Math. (Kyung-shang) 9 (1), 15-18, 2004.
  • [5] T. Kim, A note on exploring the sums of powers of consecutive q−integers, Adv. Stud. Contemp. Math. (Kyungshang) 11 (1), 137-140, 2005.
  • [6] T. Kim, C.S. Ryoo, L.C. Jang, and S. H. Rim, Exploring the sums of powers of consecutive q−integers, Internat. J. of Math. Ed. Sci. Tech. 36 (8), 947-956, 2005.
  • [7] C. Kızılateş and N. Tuğlu, Some combinatorial identities of q−harmonic and q−hyperharmonic numbers, Communications in Math. and Appl. 6 (2), 33-40, 2015.
  • [8] J. Liu, H. Pan and Y. Zhang, A generalization of Morley’s congruence, Adv. Differ. Equ. 2015 (254), 1-7, 2015.
  • [9] H. Pan, On a generalization of Carlitz’s congruence, Int. J. Mod. Math. 4, 87-93, 2009.
  • [10] Y. Simsek, D. Kim, T. Kim, and S.-H. Rim, A note on the sums of powers of consecutive q−integers, J. Appl. Funct. Differ. Equ. 1 (1), 81-88, 2006.
  • [11] Z.W. Sun, Arithmetic theory of harmonic numbers, Proc. Amer. Maths. Soc. 140 (2), 415-428, 2012.
There are 11 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Sibel Koparal 0000-0001-9574-9652

Neşe Ömür 0000-0002-3972-9910

Laid Elkhiri This is me 0000-0002-9839-4735

Publication Date March 31, 2023
Published in Issue Year 2023 Volume: 52 Issue: 2

Cite

APA Koparal, S., Ömür, N., & Elkhiri, L. (2023). Some congruences with $q-$binomial coefficients and $q-$harmonic numbers. Hacettepe Journal of Mathematics and Statistics, 52(2), 445-458. https://doi.org/10.15672/hujms.1076409
AMA Koparal S, Ömür N, Elkhiri L. Some congruences with $q-$binomial coefficients and $q-$harmonic numbers. Hacettepe Journal of Mathematics and Statistics. March 2023;52(2):445-458. doi:10.15672/hujms.1076409
Chicago Koparal, Sibel, Neşe Ömür, and Laid Elkhiri. “Some Congruences With $q-$binomial Coefficients and $q-$harmonic Numbers”. Hacettepe Journal of Mathematics and Statistics 52, no. 2 (March 2023): 445-58. https://doi.org/10.15672/hujms.1076409.
EndNote Koparal S, Ömür N, Elkhiri L (March 1, 2023) Some congruences with $q-$binomial coefficients and $q-$harmonic numbers. Hacettepe Journal of Mathematics and Statistics 52 2 445–458.
IEEE S. Koparal, N. Ömür, and L. Elkhiri, “Some congruences with $q-$binomial coefficients and $q-$harmonic numbers”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 2, pp. 445–458, 2023, doi: 10.15672/hujms.1076409.
ISNAD Koparal, Sibel et al. “Some Congruences With $q-$binomial Coefficients and $q-$harmonic Numbers”. Hacettepe Journal of Mathematics and Statistics 52/2 (March 2023), 445-458. https://doi.org/10.15672/hujms.1076409.
JAMA Koparal S, Ömür N, Elkhiri L. Some congruences with $q-$binomial coefficients and $q-$harmonic numbers. Hacettepe Journal of Mathematics and Statistics. 2023;52:445–458.
MLA Koparal, Sibel et al. “Some Congruences With $q-$binomial Coefficients and $q-$harmonic Numbers”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 2, 2023, pp. 445-58, doi:10.15672/hujms.1076409.
Vancouver Koparal S, Ömür N, Elkhiri L. Some congruences with $q-$binomial coefficients and $q-$harmonic numbers. Hacettepe Journal of Mathematics and Statistics. 2023;52(2):445-58.