Research Article
BibTex RIS Cite

Asymptotic equivalence of impulsive dynamic equations on time scales

Year 2023, Volume: 52 Issue: 2, 277 - 291, 31.03.2023
https://doi.org/10.15672/hujms.1103384

Abstract

The asymptotic equivalence of linear and quasilinear impulsive dynamic equations on time scales, as well as two types of linear equations, are proven under mild conditions. To establish the asymptotic equivalence of two impulsive dynamic equations a method has been developed that does not require restrictive conditions, such as the boundedness of the solutions. Not only the time scale extensions of former results have been obtained, but also improved for impulsive differential equations defined on the real line. Some illustrative examples are also provided, including an application to a generalized Duffing equation.

References

  • [1] M. U. Akhmet and M. A. Tleubergenova, On Asymptotic Equivalence of Impulsive Linear Homogenous Differential Systems, Mat. Zh. 2 (4), pp 15, 2008.
  • [2] M. U. Akhmet and M. A. Tleubergenova, Asymptotic Equivalence of a Quasilinear Impulsive Differential Equation and a Linear Ordinary Differential Equation, Miskolc Math. Notes 8 (2), 117-121, 2007.
  • [3] D. D. Bainov, A. B. Dishliev and I. M. Stamova, Asymptotic Equivalence of a Linear System of Impulsive Differential Equations and a System of Impulsive Differential- Difference equations, Ann. Univ. Ferrara 41, 45-54, 1995.
  • [4] D. D. Bainov, S. I. Kostadinov and A. D. Myshkis, Asymptotic Equivalence of Impulsive Differential Equations in a Banach Space, Publ. Mat. 34 (2), 249-257, 1990.
  • [5] D. D. Bainov, S. I. Kostadinov and A. D. Myshkis, Asymptotic Equivalence of Abstract Impulsive Differential Equations, Int. J. Theor. Phys. 35, 383393, 1996.
  • [6] D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Asymptotic Properties of the Solutions, World Scientific, 1995.
  • [7] M. Bohner and D. A. Lutz, Asymptotic Behavior of Dynamic Equations on Time Scales, J. Differ. Equ. Appl. 7, 2150, 2001.
  • [8] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
  • [9] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Basel, 2001.
  • [10] M. Bohner and S. G. Georgiev, Multivariable Dynamic Calculus on Time Scales, Springer, Switzerland, 2016.
  • [11] İ. M. Erhan and S. G. Georgiev, Nonlinear Integral Equations on Time Scales, Nova Science Publishers, 2019.
  • [12] S. G. Georgiev, Integral Equations on Time Scales, Atlantis Studies in Dynamical Systems, Springer, Newyork, 2016.
  • [13] S. Hilger, Analysis on Measure Chains A Unified Approach to Continuous and Discrete Calculus, Results Math. 18, 18-56, 1990.
  • [14] B. Kaymakçalan, V. Lakshmikantham and S. Sivasundaram, Dynamic Systems on Measure Chains, Dordrecht, Kluwer, 1996.
  • [15] B. Kaymakçalan, R. Mert and A. Zafer, Asymptotic Equivalence of Dynamic Systems on Time Scales, Discrete Contin. Dyn. Syst. Supplement Volume, 558-567, 2007.
  • [16] Y. Li and T. Zhang, On the Existence of Solutions for Impulsive Duffing Dynamic Equations on Time Scales with Dirichlet Boundary Conditions, Abstr. Appl. Anal. 2010, 152460, 2010.
  • [17] J. Lu, D. W. C. Ho, J. Cao and J. Kurths, Exponential Synchronization of Linearly Coupled Neural Networks With Impulsive Disturbances, IEEE Trans. Neural Netw. 22 (2), 329-336, 2011.
  • [18] A. A. Martynyuk, G. T. Stamov and I. Stamova, Asymptotic Equivalence of Ordinary and Impulsive Operator-Differential Equations, Commun. Nonlinear Sci. Numer. Simul. 78, 104891, 2019.
  • [19] M. Ráb, Uber Lineare Perturbationen Eines Systems von Linearen Differential- ĺ Gleichungen, Czech. Math. J. 83, 222-229, 1958.
  • [20] M. Ráb, Note sur les Formules Asymptotiques Pour les Solutions dun Systéme Déquations Différentielles Linéaires, Czech. Math. J. 91, 127-129, 1966.
  • [21] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, 1995.
  • [22] P. S. Simeonov and D. D. Bainov, On the Asymptotic Equivalence of Systems with Impulse Effect, J. Math. Anal. Appl. 135 (2), 591-610, 1988.
  • [23] V. A. Yakubovic, On the Asymptotic Behavior of the Solutions of a System of Differential Equations, Mat. Sb. (N.S.) 28 (70), 217-240, 1951.
  • [24] A. Zafer, On Asymptotic Equivalence of Linear and Quasilinear Difference Equations, Appl. Anal. 84 (9), 899-908, 2005.
Year 2023, Volume: 52 Issue: 2, 277 - 291, 31.03.2023
https://doi.org/10.15672/hujms.1103384

Abstract

References

  • [1] M. U. Akhmet and M. A. Tleubergenova, On Asymptotic Equivalence of Impulsive Linear Homogenous Differential Systems, Mat. Zh. 2 (4), pp 15, 2008.
  • [2] M. U. Akhmet and M. A. Tleubergenova, Asymptotic Equivalence of a Quasilinear Impulsive Differential Equation and a Linear Ordinary Differential Equation, Miskolc Math. Notes 8 (2), 117-121, 2007.
  • [3] D. D. Bainov, A. B. Dishliev and I. M. Stamova, Asymptotic Equivalence of a Linear System of Impulsive Differential Equations and a System of Impulsive Differential- Difference equations, Ann. Univ. Ferrara 41, 45-54, 1995.
  • [4] D. D. Bainov, S. I. Kostadinov and A. D. Myshkis, Asymptotic Equivalence of Impulsive Differential Equations in a Banach Space, Publ. Mat. 34 (2), 249-257, 1990.
  • [5] D. D. Bainov, S. I. Kostadinov and A. D. Myshkis, Asymptotic Equivalence of Abstract Impulsive Differential Equations, Int. J. Theor. Phys. 35, 383393, 1996.
  • [6] D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Asymptotic Properties of the Solutions, World Scientific, 1995.
  • [7] M. Bohner and D. A. Lutz, Asymptotic Behavior of Dynamic Equations on Time Scales, J. Differ. Equ. Appl. 7, 2150, 2001.
  • [8] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
  • [9] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Basel, 2001.
  • [10] M. Bohner and S. G. Georgiev, Multivariable Dynamic Calculus on Time Scales, Springer, Switzerland, 2016.
  • [11] İ. M. Erhan and S. G. Georgiev, Nonlinear Integral Equations on Time Scales, Nova Science Publishers, 2019.
  • [12] S. G. Georgiev, Integral Equations on Time Scales, Atlantis Studies in Dynamical Systems, Springer, Newyork, 2016.
  • [13] S. Hilger, Analysis on Measure Chains A Unified Approach to Continuous and Discrete Calculus, Results Math. 18, 18-56, 1990.
  • [14] B. Kaymakçalan, V. Lakshmikantham and S. Sivasundaram, Dynamic Systems on Measure Chains, Dordrecht, Kluwer, 1996.
  • [15] B. Kaymakçalan, R. Mert and A. Zafer, Asymptotic Equivalence of Dynamic Systems on Time Scales, Discrete Contin. Dyn. Syst. Supplement Volume, 558-567, 2007.
  • [16] Y. Li and T. Zhang, On the Existence of Solutions for Impulsive Duffing Dynamic Equations on Time Scales with Dirichlet Boundary Conditions, Abstr. Appl. Anal. 2010, 152460, 2010.
  • [17] J. Lu, D. W. C. Ho, J. Cao and J. Kurths, Exponential Synchronization of Linearly Coupled Neural Networks With Impulsive Disturbances, IEEE Trans. Neural Netw. 22 (2), 329-336, 2011.
  • [18] A. A. Martynyuk, G. T. Stamov and I. Stamova, Asymptotic Equivalence of Ordinary and Impulsive Operator-Differential Equations, Commun. Nonlinear Sci. Numer. Simul. 78, 104891, 2019.
  • [19] M. Ráb, Uber Lineare Perturbationen Eines Systems von Linearen Differential- ĺ Gleichungen, Czech. Math. J. 83, 222-229, 1958.
  • [20] M. Ráb, Note sur les Formules Asymptotiques Pour les Solutions dun Systéme Déquations Différentielles Linéaires, Czech. Math. J. 91, 127-129, 1966.
  • [21] A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, 1995.
  • [22] P. S. Simeonov and D. D. Bainov, On the Asymptotic Equivalence of Systems with Impulse Effect, J. Math. Anal. Appl. 135 (2), 591-610, 1988.
  • [23] V. A. Yakubovic, On the Asymptotic Behavior of the Solutions of a System of Differential Equations, Mat. Sb. (N.S.) 28 (70), 217-240, 1951.
  • [24] A. Zafer, On Asymptotic Equivalence of Linear and Quasilinear Difference Equations, Appl. Anal. 84 (9), 899-908, 2005.
There are 24 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Sibel Doğru Akgöl 0000-0003-3513-1046

Publication Date March 31, 2023
Published in Issue Year 2023 Volume: 52 Issue: 2

Cite

APA Doğru Akgöl, S. (2023). Asymptotic equivalence of impulsive dynamic equations on time scales. Hacettepe Journal of Mathematics and Statistics, 52(2), 277-291. https://doi.org/10.15672/hujms.1103384
AMA Doğru Akgöl S. Asymptotic equivalence of impulsive dynamic equations on time scales. Hacettepe Journal of Mathematics and Statistics. March 2023;52(2):277-291. doi:10.15672/hujms.1103384
Chicago Doğru Akgöl, Sibel. “Asymptotic Equivalence of Impulsive Dynamic Equations on Time Scales”. Hacettepe Journal of Mathematics and Statistics 52, no. 2 (March 2023): 277-91. https://doi.org/10.15672/hujms.1103384.
EndNote Doğru Akgöl S (March 1, 2023) Asymptotic equivalence of impulsive dynamic equations on time scales. Hacettepe Journal of Mathematics and Statistics 52 2 277–291.
IEEE S. Doğru Akgöl, “Asymptotic equivalence of impulsive dynamic equations on time scales”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 2, pp. 277–291, 2023, doi: 10.15672/hujms.1103384.
ISNAD Doğru Akgöl, Sibel. “Asymptotic Equivalence of Impulsive Dynamic Equations on Time Scales”. Hacettepe Journal of Mathematics and Statistics 52/2 (March 2023), 277-291. https://doi.org/10.15672/hujms.1103384.
JAMA Doğru Akgöl S. Asymptotic equivalence of impulsive dynamic equations on time scales. Hacettepe Journal of Mathematics and Statistics. 2023;52:277–291.
MLA Doğru Akgöl, Sibel. “Asymptotic Equivalence of Impulsive Dynamic Equations on Time Scales”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 2, 2023, pp. 277-91, doi:10.15672/hujms.1103384.
Vancouver Doğru Akgöl S. Asymptotic equivalence of impulsive dynamic equations on time scales. Hacettepe Journal of Mathematics and Statistics. 2023;52(2):277-91.