Year 2023,
Volume: 52 Issue: 2, 340 - 355, 31.03.2023
Zahra Bagheri
Esmaeil Peyghan
References
-
[1] S. Amari and H. Nagaoka, Methods of information geometry, in: Transl. Math.
Monogr., Amer. Math. Soc. 191, 2000.
-
[2] Z. Bagheri and E. Peyghan, (Para-) Kähler structures on $\rho$-commutative algebras,
Adv. Appl. Clifford Algebras 28 (5), 95, 2018.
-
[3] P. J. Bongaarts and H. G. J. Pijls, Almost commutative algebra and differential calculus
on the quantum hyperplane, J. Math. Phys. 35 (2), 959–970, 1994.
-
[4] S.Y. Cheng and S. T. Yau, The real Monge-Amp‘ere equation and affine flat structures.
In: Proceedings of the 1980 Beijing Symposium on Differential Geometry and
Differential Equations, Vol. I, Science Press, New York, 339-370, 1982.
-
[5] C. Ciupala, Linear connections on almost commutative algebras, Acta. Th. Univ.
Comenianiae 72 (2), 197207, 2003.
-
[6] C. Ciupala, Connections and distributions on quantum hyperplane, Czech. J. Phys.
54 (8), 921–932, 2004.
-
[7] C. Ciupala, 2-$\rho$-derivation on a $\rho$-algebra and application to the quaternionic algebra,
Int. J. Geom. Meth. Mod. Phys. 4 (3), 457–469, 2007.
-
[8] M. Dubois-Violette, Dérivations et calcul différentiel non commutatif, C.R. Acad. Sci.
Paris, série I. 307, 403–408, 1988.
-
[9] T. Fei and J. Zhang, Interaction of Codazzi Couplings with (Para-)Kähler Geometry,
Results Math. 72 (2), 2017. DOI 10.1007/s00025-017-0711-7.
-
[10] H. Furuhata and I. Hasegawa, Submanifold theory in holomorphic statistical manifolds,
in: S. Dragomir, M.H. Shahid, F.R. Al-Solamy (Eds.), Geometry of Cauchy-
Riemann Submanifolds, Springer, Singapore, 179–215, 2016.
-
[11] E. Kähler, Über eine bemerkenswerte Hermtesche metrik, Abn. Sem. Unv. Hamburg
9, 173–186, 1933.
-
[12] S. L. Lauritzen, Statistical manifolds, In: Differential Geometry in Statistical Inferences,
IMS Lecture Notes Monogr. Ser., 10, Inst. Math. Statist., Hayward California,
96–163, 1987.
-
[13] S. Majid, Classification of bicovariant differential calculi, J. Geom. Phys. 25, 119–140,
1998.
-
[14] S. Majid, Riemannian geometry of quantum groups and finite groups with nonuniversal
differentials, Commun. Math. Phys. 225, 131–170, 2002.
-
[15] F. Ngakeu, Levi-Civita connection on almost commutative algebras, Int. J. Geom.
Meth. Mod Phys. 4 (7), 1075–1085, 2007.
-
[16] F. Ngakeu, S. Majid and D. Lambert, Noncommutative Riemannian geometry of the
alternating group A4, J. Geom. Phys. 42, 259–282, 2002.
-
[17] K. Nomizu and T. Sasaki,Affine Differential Geometry: Geometry of Affine Immersions,
Volume 111 of Cambridge Tracts in Mathematics, Cambridge University Press,
Cambridge, 1994.
-
[18] H. Shima, On certain locally flat homogeneous manifolds of solvable Lie groups, Osaka
J. Math. 13 (2), 213-229, 1976.
-
[19] U. Simon, Affine differential geometry. In: Dillen, F., Verstraelen, L. (eds.) Handbook
of Differential Geometry, North-Holland 1, 905–961, 2000.
-
[20] K.Takano, Statistical manifolds with almost complex structures and its statistical submersions,
Tensor N.S. 65, 128–142, 2004.
-
[21] K.Takano, Statistical manifolds with almost contact structures and its statistical submersions,
J. Geom. 85, 171–187, 2006.
Statistical $\rho$-commutative algebras
Year 2023,
Volume: 52 Issue: 2, 340 - 355, 31.03.2023
Zahra Bagheri
Esmaeil Peyghan
Abstract
In this article, we study Codazzi-couples of an arbitrary connection $\nabla$ with a nondegenerate 2-form $\omega$, an isomorphism $L$ on the space of derivation of $\rho$-commutative algebra $A$, which the important examples of isomorphism $L$ are almost complex and almost para-complex structures, a metric $g$ that $(g, \omega,L)$ form a compatible triple. We study a statistical structure on $\rho$-commutative algebras by the classical manner on Riemannian manifolds. Then by recalling the notions of almost (para-)Kähler $\rho$-commutative algebras, we generalized the notion of Codazzi-(para-)Kähler $\rho$-commutative algebra as a (para-)Kähler (or Fedosov) $\rho$-commutative algebra which is at the same time statistical and moreover define the holomorphic $\rho$-commutative algebras.
References
-
[1] S. Amari and H. Nagaoka, Methods of information geometry, in: Transl. Math.
Monogr., Amer. Math. Soc. 191, 2000.
-
[2] Z. Bagheri and E. Peyghan, (Para-) Kähler structures on $\rho$-commutative algebras,
Adv. Appl. Clifford Algebras 28 (5), 95, 2018.
-
[3] P. J. Bongaarts and H. G. J. Pijls, Almost commutative algebra and differential calculus
on the quantum hyperplane, J. Math. Phys. 35 (2), 959–970, 1994.
-
[4] S.Y. Cheng and S. T. Yau, The real Monge-Amp‘ere equation and affine flat structures.
In: Proceedings of the 1980 Beijing Symposium on Differential Geometry and
Differential Equations, Vol. I, Science Press, New York, 339-370, 1982.
-
[5] C. Ciupala, Linear connections on almost commutative algebras, Acta. Th. Univ.
Comenianiae 72 (2), 197207, 2003.
-
[6] C. Ciupala, Connections and distributions on quantum hyperplane, Czech. J. Phys.
54 (8), 921–932, 2004.
-
[7] C. Ciupala, 2-$\rho$-derivation on a $\rho$-algebra and application to the quaternionic algebra,
Int. J. Geom. Meth. Mod. Phys. 4 (3), 457–469, 2007.
-
[8] M. Dubois-Violette, Dérivations et calcul différentiel non commutatif, C.R. Acad. Sci.
Paris, série I. 307, 403–408, 1988.
-
[9] T. Fei and J. Zhang, Interaction of Codazzi Couplings with (Para-)Kähler Geometry,
Results Math. 72 (2), 2017. DOI 10.1007/s00025-017-0711-7.
-
[10] H. Furuhata and I. Hasegawa, Submanifold theory in holomorphic statistical manifolds,
in: S. Dragomir, M.H. Shahid, F.R. Al-Solamy (Eds.), Geometry of Cauchy-
Riemann Submanifolds, Springer, Singapore, 179–215, 2016.
-
[11] E. Kähler, Über eine bemerkenswerte Hermtesche metrik, Abn. Sem. Unv. Hamburg
9, 173–186, 1933.
-
[12] S. L. Lauritzen, Statistical manifolds, In: Differential Geometry in Statistical Inferences,
IMS Lecture Notes Monogr. Ser., 10, Inst. Math. Statist., Hayward California,
96–163, 1987.
-
[13] S. Majid, Classification of bicovariant differential calculi, J. Geom. Phys. 25, 119–140,
1998.
-
[14] S. Majid, Riemannian geometry of quantum groups and finite groups with nonuniversal
differentials, Commun. Math. Phys. 225, 131–170, 2002.
-
[15] F. Ngakeu, Levi-Civita connection on almost commutative algebras, Int. J. Geom.
Meth. Mod Phys. 4 (7), 1075–1085, 2007.
-
[16] F. Ngakeu, S. Majid and D. Lambert, Noncommutative Riemannian geometry of the
alternating group A4, J. Geom. Phys. 42, 259–282, 2002.
-
[17] K. Nomizu and T. Sasaki,Affine Differential Geometry: Geometry of Affine Immersions,
Volume 111 of Cambridge Tracts in Mathematics, Cambridge University Press,
Cambridge, 1994.
-
[18] H. Shima, On certain locally flat homogeneous manifolds of solvable Lie groups, Osaka
J. Math. 13 (2), 213-229, 1976.
-
[19] U. Simon, Affine differential geometry. In: Dillen, F., Verstraelen, L. (eds.) Handbook
of Differential Geometry, North-Holland 1, 905–961, 2000.
-
[20] K.Takano, Statistical manifolds with almost complex structures and its statistical submersions,
Tensor N.S. 65, 128–142, 2004.
-
[21] K.Takano, Statistical manifolds with almost contact structures and its statistical submersions,
J. Geom. 85, 171–187, 2006.