Research Article
BibTex RIS Cite
Year 2023, Volume: 52 Issue: 2, 398 - 409, 31.03.2023
https://doi.org/10.15672/hujms.1121712

Abstract

References

  • [1] A. Ayache and O. Echi, The envelope of a subcategory in Topology and group theory, Int. J. Math. Math. Sci. 21, 3787–3404, 2005.
  • [2] K. Belaid, H-spectral spaces, Topol. Appl. 153, 3019–3023, 2006.
  • [3] K. Belaid, O. Echi, and R. Gargouri, A-spectral spaces, Topol. Appl., 138, 315–322, 2004.
  • [4] K. Belaid, O. Echi, and S. Lazaar, $T_{(\alpha , \beta )}$-spaces and the Wallman compactification, Int. J. Math. Math. Sci. 68, 3717–3735, 2004.
  • [5] E. Bouacida, O. Echi, and E. Salhi, Foliations, spectral topology and special morphisms, Lect. Notes in Pure and Appl. Math. 205, 111–132, 1999.
  • [6] E. Bouacida, O. Echi, and E. Salhi, Feuilletages et topologie spectrale, J. Math. Soc. Jpn. 52 (2), 447–464, 2000.
  • [7] O. Bratteli and G.A. Elliott. Structure spaces of approximately finite-dimensional $C^{\star}$-algebras II, J. Funct. Anal. 30 (1), 74–82, 1978.
  • [8] C. Casacuberta, A. Frei, and G. C. Tan, Extending localization functors, J. Pure Appl. Algebra 103, 149–165, 1995.
  • [9] A. Deleanu, A. Frei, and P. Hilton, Generalized Adams completion, Cah. Topologie Géom. Différ. Catég. 15, 61–82, 1974.
  • [10] D. Dikranjan and W. Tholen, Categorical Structure of Closure Operators, Kluwer Academic Publishers, 1995.
  • [11] R. El Bashir and J. Velebil, Simultaneously reflective and coreflective subcategories of presheaves, Theory Appl. Categ. 10, 410–423, 2002.
  • [12] A. Frei, On completion and shape, Bol. Soc. Brasil. Mat., 5, 147–159, 1974.
  • [13] P. J. Freyd and G. M. Kelly, Categories of continuous functors (I), J. Pure Appl. Algebra 2, 169–191, 1972.
  • [14] A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique, Die Grundlehren der Mathematischen Wissenschaften 166, Springer-Verlag, New York, 1971.
  • [15] J. Hartmanis, On the lattice of topologies, Canad. J. Math. 10, 547–553, 1958.
  • [16] J. M. Harvey, Reflective subcategories Ill, J. Math. 29, 365–369, 1985.
  • [17] H. Herrlich and G. Strecker, H-closed spaces and reflective subcategories, Math. Ann. 177, 302–309, 1968.
  • [18] M. Hochster, Prime ideal structure in commutative rings, Trans. Am. Math. Soc. 142, 43–60, 1969.
  • [19] M. Lamper, Complements in the lattice of all topologies of topological groups, Arch Math. (Brno) 10 (4), 221–230, 1974.
  • [20] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Math. 5, Springer-Verlag, New York, 1971.
  • [21] W. Tholen, Reflective subcategories, Topol. Appl. 27, 201–212, 1987.
  • [22] W.J. Thron, Lattice-equivalence of topological spaces, Duke. Math. J. 29, 671–679, 1962.

On $T_1$-reflection of topological spaces

Year 2023, Volume: 52 Issue: 2, 398 - 409, 31.03.2023
https://doi.org/10.15672/hujms.1121712

Abstract

This paper deals with some universal spaces. For every topological space $X$, the universal $T_1$ space is viewed as the bottom element of the lattice $\mathcal{L}_X$. The class of morphisms in $\mathrm{\mathbf{Top}}$ orthogonal to all $T_1$ spaces is characterized. Also, we introduce some new separation axioms and characterize them. Moreover, we characterize topological spaces $X$ for which the universal $T_1$ space associated with $X$ is a spectral space. Finally, we give some characterizations of topological spaces such that their $T_1$-reflection are compact spaces.

References

  • [1] A. Ayache and O. Echi, The envelope of a subcategory in Topology and group theory, Int. J. Math. Math. Sci. 21, 3787–3404, 2005.
  • [2] K. Belaid, H-spectral spaces, Topol. Appl. 153, 3019–3023, 2006.
  • [3] K. Belaid, O. Echi, and R. Gargouri, A-spectral spaces, Topol. Appl., 138, 315–322, 2004.
  • [4] K. Belaid, O. Echi, and S. Lazaar, $T_{(\alpha , \beta )}$-spaces and the Wallman compactification, Int. J. Math. Math. Sci. 68, 3717–3735, 2004.
  • [5] E. Bouacida, O. Echi, and E. Salhi, Foliations, spectral topology and special morphisms, Lect. Notes in Pure and Appl. Math. 205, 111–132, 1999.
  • [6] E. Bouacida, O. Echi, and E. Salhi, Feuilletages et topologie spectrale, J. Math. Soc. Jpn. 52 (2), 447–464, 2000.
  • [7] O. Bratteli and G.A. Elliott. Structure spaces of approximately finite-dimensional $C^{\star}$-algebras II, J. Funct. Anal. 30 (1), 74–82, 1978.
  • [8] C. Casacuberta, A. Frei, and G. C. Tan, Extending localization functors, J. Pure Appl. Algebra 103, 149–165, 1995.
  • [9] A. Deleanu, A. Frei, and P. Hilton, Generalized Adams completion, Cah. Topologie Géom. Différ. Catég. 15, 61–82, 1974.
  • [10] D. Dikranjan and W. Tholen, Categorical Structure of Closure Operators, Kluwer Academic Publishers, 1995.
  • [11] R. El Bashir and J. Velebil, Simultaneously reflective and coreflective subcategories of presheaves, Theory Appl. Categ. 10, 410–423, 2002.
  • [12] A. Frei, On completion and shape, Bol. Soc. Brasil. Mat., 5, 147–159, 1974.
  • [13] P. J. Freyd and G. M. Kelly, Categories of continuous functors (I), J. Pure Appl. Algebra 2, 169–191, 1972.
  • [14] A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique, Die Grundlehren der Mathematischen Wissenschaften 166, Springer-Verlag, New York, 1971.
  • [15] J. Hartmanis, On the lattice of topologies, Canad. J. Math. 10, 547–553, 1958.
  • [16] J. M. Harvey, Reflective subcategories Ill, J. Math. 29, 365–369, 1985.
  • [17] H. Herrlich and G. Strecker, H-closed spaces and reflective subcategories, Math. Ann. 177, 302–309, 1968.
  • [18] M. Hochster, Prime ideal structure in commutative rings, Trans. Am. Math. Soc. 142, 43–60, 1969.
  • [19] M. Lamper, Complements in the lattice of all topologies of topological groups, Arch Math. (Brno) 10 (4), 221–230, 1974.
  • [20] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Math. 5, Springer-Verlag, New York, 1971.
  • [21] W. Tholen, Reflective subcategories, Topol. Appl. 27, 201–212, 1987.
  • [22] W.J. Thron, Lattice-equivalence of topological spaces, Duke. Math. J. 29, 671–679, 1962.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Sami Lazaar 0000-0002-3190-4251

Abdelwaheb Mhemdi 0000-0002-9870-7148

Tareq Al-shami 0000-0002-8074-1102

Hadjer Okbani 0000-0003-1889-3583

Publication Date March 31, 2023
Published in Issue Year 2023 Volume: 52 Issue: 2

Cite

APA Lazaar, S., Mhemdi, A., Al-shami, T., Okbani, H. (2023). On $T_1$-reflection of topological spaces. Hacettepe Journal of Mathematics and Statistics, 52(2), 398-409. https://doi.org/10.15672/hujms.1121712
AMA Lazaar S, Mhemdi A, Al-shami T, Okbani H. On $T_1$-reflection of topological spaces. Hacettepe Journal of Mathematics and Statistics. March 2023;52(2):398-409. doi:10.15672/hujms.1121712
Chicago Lazaar, Sami, Abdelwaheb Mhemdi, Tareq Al-shami, and Hadjer Okbani. “On $T_1$-Reflection of Topological Spaces”. Hacettepe Journal of Mathematics and Statistics 52, no. 2 (March 2023): 398-409. https://doi.org/10.15672/hujms.1121712.
EndNote Lazaar S, Mhemdi A, Al-shami T, Okbani H (March 1, 2023) On $T_1$-reflection of topological spaces. Hacettepe Journal of Mathematics and Statistics 52 2 398–409.
IEEE S. Lazaar, A. Mhemdi, T. Al-shami, and H. Okbani, “On $T_1$-reflection of topological spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 2, pp. 398–409, 2023, doi: 10.15672/hujms.1121712.
ISNAD Lazaar, Sami et al. “On $T_1$-Reflection of Topological Spaces”. Hacettepe Journal of Mathematics and Statistics 52/2 (March 2023), 398-409. https://doi.org/10.15672/hujms.1121712.
JAMA Lazaar S, Mhemdi A, Al-shami T, Okbani H. On $T_1$-reflection of topological spaces. Hacettepe Journal of Mathematics and Statistics. 2023;52:398–409.
MLA Lazaar, Sami et al. “On $T_1$-Reflection of Topological Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 2, 2023, pp. 398-09, doi:10.15672/hujms.1121712.
Vancouver Lazaar S, Mhemdi A, Al-shami T, Okbani H. On $T_1$-reflection of topological spaces. Hacettepe Journal of Mathematics and Statistics. 2023;52(2):398-409.