Research Article
BibTex RIS Cite
Year 2023, Volume: 52 Issue: 3, 630 - 639, 30.05.2023

Abstract

Project Number

NA

References

  • [1] P. Bal and S. Bhowmik, Star-selection principle: Another new direction, J. Indian Math. Soc. 84 (1-2), 01-06, 2017.
  • [2] P. Bal and S. Bhowmik, On R-star-Lindelöf spaces, Palest. J. Math. 6 (2), 480-486, 2017.
  • [3] P. Bal and S. Bhowmik, Some new star-selection principles in topology, Filomat, 31 (13), 4041-4050, 2017.
  • [4] P. Bal, S. Bhowmik and D. Gauld, On selectively star-Lindelöf properties, J. Indian Math. Soc. 85 (3-4), 291-304, 2018.
  • [5] P. Bal and Lj.D.R. Kočinac, On selectively star-ccc spaces, Topology Appl. 281, 107184, 2020.
  • [6] M. Bonanzinga and F. Maesano, Some properties defined by relative versions of starcovering properties, Topology Appl. 306, 107-923, 2022.
  • [7] M. Bonanzinga, D. Giacopello and F. Maesano, Some properties defined by relative versions of star-covering properties II, submitted.
  • [8] J. Connor, The statistical and strong P-Cesaro convergences of sequences, Analysis, 8, 22-32, 1988.
  • [9] P. Das, Certain types of open covers and selection principles using ideals, Houston J. Math. 39 (2), 637-650, 2013.
  • [10] E.K. van Douwen, G.M. Reed, A.W. Roscoe and I.J. Tree, Star covering properties, Topology Appl. 39 (1), 71-103, 1991.
  • [11] R. Engelking, General topology, Sigma Series in Pure Mathematics, Revised and complete ed. Berlin: Heldermann, 1989.
  • [12] H. Fast, Sur la convergence statistique, Colloq. Math. 2, 241 - 244, 1951.
  • [13] J.A. Fridy, On statistical convergence, Analysis, 5, 301-313, 1985.
  • [14] Lj.D.R. Kočinac, Star selection principles : A survey, Khayyam J. Math. 1, 82-106, 2015.
  • [15] Lj.D.R. Kočinac, Star-Menger and related spaces II, Filomat, 13, 129-140, 1999.
  • [16] Lj.D.R. Kočinac, Star-Menger and related spaces, Publ. Math. Debrecen 55, 421-431, 1999.
  • [17] Lj.D.R. Kočinac and S. Singh, On the set version of selectively star-ccc spaces, J. Math. 2020, 9274503, 2020.
  • [18] Lj.D.R. Kočinac and S Özb¸caˇg, More on selective covering properties in bitopological space, J. Math. 2021, 5558456, 2021.
  • [19] P. Kostyrko, T. Šalat and W. Wilczynski, I- convergence, Real Anal. Exchange 26, 669-686, 2001.
  • [20] B.K. Lahiri and P. Das, I and I* convergence of nets, Real Anal. Exchange 32, 431- 442, 2008.
  • [21] B.K. Lahiri and P. Das, I and I* convergence in topological spaces, Math. Bohemica 130, 153-160, 2005.
  • [22] G. Di Maio and Lj.D.R. Kočinak, Statistical convergence in topology, Topology Appl. 156, 28-45, 2008.
  • [23] M. Sakai, Star covering versions of the Menger property, Topology Appl. 176, 2234, 2014.
  • [24] Y.K. Song and W.F. Xuan, A note on selectively star-ccc spaces, Topology Appl. 263, 343-349, 2019.
  • [25] Y.K. Song and W.F. Xuan, More on selectively star-ccc spaces, Topology Appl. 268, 106905, 2019.
  • [26] W.F. Xuan and Y.K. Song, A study of selectively star-ccc spaces, Topology Appl. 273, 107103, 2020.

On the class of $I$-$\gamma$-open cover and $I$-$St$-$\gamma$-open cover

Year 2023, Volume: 52 Issue: 3, 630 - 639, 30.05.2023

Abstract

Inspired by Pratulananda Das' recent efforts, we develop and investigate a new class of ideal-open covers that are formed after the interplay of the existing ideal-open covers with the star-operator. Interdependencies between specific sorts of open coverings have been detected and in order to grasp the differences between the new and older classes of ideal open covers, several constructive examples are illustrated. Our finding also establish some strong prerequisite for certain of P. Das' findings. In addition, the nature of $I$-dense subsets of the classes of ideal-open-covers are investigated in this paper.

Supporting Institution

NA

Project Number

NA

References

  • [1] P. Bal and S. Bhowmik, Star-selection principle: Another new direction, J. Indian Math. Soc. 84 (1-2), 01-06, 2017.
  • [2] P. Bal and S. Bhowmik, On R-star-Lindelöf spaces, Palest. J. Math. 6 (2), 480-486, 2017.
  • [3] P. Bal and S. Bhowmik, Some new star-selection principles in topology, Filomat, 31 (13), 4041-4050, 2017.
  • [4] P. Bal, S. Bhowmik and D. Gauld, On selectively star-Lindelöf properties, J. Indian Math. Soc. 85 (3-4), 291-304, 2018.
  • [5] P. Bal and Lj.D.R. Kočinac, On selectively star-ccc spaces, Topology Appl. 281, 107184, 2020.
  • [6] M. Bonanzinga and F. Maesano, Some properties defined by relative versions of starcovering properties, Topology Appl. 306, 107-923, 2022.
  • [7] M. Bonanzinga, D. Giacopello and F. Maesano, Some properties defined by relative versions of star-covering properties II, submitted.
  • [8] J. Connor, The statistical and strong P-Cesaro convergences of sequences, Analysis, 8, 22-32, 1988.
  • [9] P. Das, Certain types of open covers and selection principles using ideals, Houston J. Math. 39 (2), 637-650, 2013.
  • [10] E.K. van Douwen, G.M. Reed, A.W. Roscoe and I.J. Tree, Star covering properties, Topology Appl. 39 (1), 71-103, 1991.
  • [11] R. Engelking, General topology, Sigma Series in Pure Mathematics, Revised and complete ed. Berlin: Heldermann, 1989.
  • [12] H. Fast, Sur la convergence statistique, Colloq. Math. 2, 241 - 244, 1951.
  • [13] J.A. Fridy, On statistical convergence, Analysis, 5, 301-313, 1985.
  • [14] Lj.D.R. Kočinac, Star selection principles : A survey, Khayyam J. Math. 1, 82-106, 2015.
  • [15] Lj.D.R. Kočinac, Star-Menger and related spaces II, Filomat, 13, 129-140, 1999.
  • [16] Lj.D.R. Kočinac, Star-Menger and related spaces, Publ. Math. Debrecen 55, 421-431, 1999.
  • [17] Lj.D.R. Kočinac and S. Singh, On the set version of selectively star-ccc spaces, J. Math. 2020, 9274503, 2020.
  • [18] Lj.D.R. Kočinac and S Özb¸caˇg, More on selective covering properties in bitopological space, J. Math. 2021, 5558456, 2021.
  • [19] P. Kostyrko, T. Šalat and W. Wilczynski, I- convergence, Real Anal. Exchange 26, 669-686, 2001.
  • [20] B.K. Lahiri and P. Das, I and I* convergence of nets, Real Anal. Exchange 32, 431- 442, 2008.
  • [21] B.K. Lahiri and P. Das, I and I* convergence in topological spaces, Math. Bohemica 130, 153-160, 2005.
  • [22] G. Di Maio and Lj.D.R. Kočinak, Statistical convergence in topology, Topology Appl. 156, 28-45, 2008.
  • [23] M. Sakai, Star covering versions of the Menger property, Topology Appl. 176, 2234, 2014.
  • [24] Y.K. Song and W.F. Xuan, A note on selectively star-ccc spaces, Topology Appl. 263, 343-349, 2019.
  • [25] Y.K. Song and W.F. Xuan, More on selectively star-ccc spaces, Topology Appl. 268, 106905, 2019.
  • [26] W.F. Xuan and Y.K. Song, A study of selectively star-ccc spaces, Topology Appl. 273, 107103, 2020.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Prasenjit Bal 0000-0001-5047-7390

Project Number NA
Publication Date May 30, 2023
Published in Issue Year 2023 Volume: 52 Issue: 3

Cite

APA Bal, P. (2023). On the class of $I$-$\gamma$-open cover and $I$-$St$-$\gamma$-open cover. Hacettepe Journal of Mathematics and Statistics, 52(3), 630-639.
AMA Bal P. On the class of $I$-$\gamma$-open cover and $I$-$St$-$\gamma$-open cover. Hacettepe Journal of Mathematics and Statistics. May 2023;52(3):630-639.
Chicago Bal, Prasenjit. “On the Class of $I$-$\gamma$-Open Cover and $I$-$St$-$\gamma$-Open Cover”. Hacettepe Journal of Mathematics and Statistics 52, no. 3 (May 2023): 630-39.
EndNote Bal P (May 1, 2023) On the class of $I$-$\gamma$-open cover and $I$-$St$-$\gamma$-open cover. Hacettepe Journal of Mathematics and Statistics 52 3 630–639.
IEEE P. Bal, “On the class of $I$-$\gamma$-open cover and $I$-$St$-$\gamma$-open cover”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 3, pp. 630–639, 2023.
ISNAD Bal, Prasenjit. “On the Class of $I$-$\gamma$-Open Cover and $I$-$St$-$\gamma$-Open Cover”. Hacettepe Journal of Mathematics and Statistics 52/3 (May 2023), 630-639.
JAMA Bal P. On the class of $I$-$\gamma$-open cover and $I$-$St$-$\gamma$-open cover. Hacettepe Journal of Mathematics and Statistics. 2023;52:630–639.
MLA Bal, Prasenjit. “On the Class of $I$-$\gamma$-Open Cover and $I$-$St$-$\gamma$-Open Cover”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 3, 2023, pp. 630-9.
Vancouver Bal P. On the class of $I$-$\gamma$-open cover and $I$-$St$-$\gamma$-open cover. Hacettepe Journal of Mathematics and Statistics. 2023;52(3):630-9.