Research Article
BibTex RIS Cite

AN UPPER BOUND ON THE SPECTRAL RADIUS OF WEIGHTED GRAPHS

Year 2013, Volume: 42 Issue: 5, 517 - 524, 01.05.2013

Abstract

We consider weighted graphs, where the edge weights are positive definite matrices. The eigenvalues of a graph are the eigenvalues of itsadjacency matrix. We obtain another upper bound which is sharp onthe spectral radius of the adjacency matrix and compare with someknown upper bounds with the help of some examples of graphs. Wealso characterize graphs for which the bound is attained.

References

  • Berman, A., Zhang,X.D. On the spectral radius of graphs with cut vertices, J. Combin. Theory Ser. B 83, 233-240, 2001.
  • Brualdi, R.A., Hoffman, A.J. On the spectral radius of a (0,1)-matrix, Linear Algebra Appl. 65, 133-146, 1985.
  • Cvetkovic, D., Rowlinson, P. The largest eigenvalue of a graph:a survey, Linear Multilinear Algebra 28, 3-33, 1990.
  • Das, K.C., Kumar, P. Bounds on the greatest eigenvalue of graphs, Indian J. Pure Appl. Math. 123, 65-74, 1993.
  • Das, K.C., Kumar, P. Some new bounds on the spectral radius of graphs, Discrete Mathematics 281, 149-161, 2004.
  • Das, K.C., Bapat, R.B. A sharp upper bound on the spectral radius of weighted graphs, Discrete Math. 308 (15), 3180-3186, 2008.
  • Hong, Y. Bounds of eigenvalues of graphs, Discrete Math. 123, 65-74, 1993.
  • Stanley, R.P. A bound on the spectral radius of graphs with e edges, Lin. Alg. Appl. 67, 267-269, 1987.
  • B¨ uy¨ ukk¨ ose, S., Sorgun, S. A bound on the Spectral radius of a weighted graph, G. U. Journal Of Science 22, 263-266, 2009.
  • Horn, R.A., Johnson, C.R. Matrix Analysis, Cambridge University Press, New York, 1985.
Year 2013, Volume: 42 Issue: 5, 517 - 524, 01.05.2013

Abstract

References

  • Berman, A., Zhang,X.D. On the spectral radius of graphs with cut vertices, J. Combin. Theory Ser. B 83, 233-240, 2001.
  • Brualdi, R.A., Hoffman, A.J. On the spectral radius of a (0,1)-matrix, Linear Algebra Appl. 65, 133-146, 1985.
  • Cvetkovic, D., Rowlinson, P. The largest eigenvalue of a graph:a survey, Linear Multilinear Algebra 28, 3-33, 1990.
  • Das, K.C., Kumar, P. Bounds on the greatest eigenvalue of graphs, Indian J. Pure Appl. Math. 123, 65-74, 1993.
  • Das, K.C., Kumar, P. Some new bounds on the spectral radius of graphs, Discrete Mathematics 281, 149-161, 2004.
  • Das, K.C., Bapat, R.B. A sharp upper bound on the spectral radius of weighted graphs, Discrete Math. 308 (15), 3180-3186, 2008.
  • Hong, Y. Bounds of eigenvalues of graphs, Discrete Math. 123, 65-74, 1993.
  • Stanley, R.P. A bound on the spectral radius of graphs with e edges, Lin. Alg. Appl. 67, 267-269, 1987.
  • B¨ uy¨ ukk¨ ose, S., Sorgun, S. A bound on the Spectral radius of a weighted graph, G. U. Journal Of Science 22, 263-266, 2009.
  • Horn, R.A., Johnson, C.R. Matrix Analysis, Cambridge University Press, New York, 1985.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

S. Sorgun This is me

Ş. Büyükköse This is me

H. S. Özarslan This is me

Publication Date May 1, 2013
Published in Issue Year 2013 Volume: 42 Issue: 5

Cite

APA Sorgun, S., Büyükköse, Ş., & Özarslan, H. S. (2013). AN UPPER BOUND ON THE SPECTRAL RADIUS OF WEIGHTED GRAPHS. Hacettepe Journal of Mathematics and Statistics, 42(5), 517-524.
AMA Sorgun S, Büyükköse Ş, Özarslan HS. AN UPPER BOUND ON THE SPECTRAL RADIUS OF WEIGHTED GRAPHS. Hacettepe Journal of Mathematics and Statistics. May 2013;42(5):517-524.
Chicago Sorgun, S., Ş. Büyükköse, and H. S. Özarslan. “AN UPPER BOUND ON THE SPECTRAL RADIUS OF WEIGHTED GRAPHS”. Hacettepe Journal of Mathematics and Statistics 42, no. 5 (May 2013): 517-24.
EndNote Sorgun S, Büyükköse Ş, Özarslan HS (May 1, 2013) AN UPPER BOUND ON THE SPECTRAL RADIUS OF WEIGHTED GRAPHS. Hacettepe Journal of Mathematics and Statistics 42 5 517–524.
IEEE S. Sorgun, Ş. Büyükköse, and H. S. Özarslan, “AN UPPER BOUND ON THE SPECTRAL RADIUS OF WEIGHTED GRAPHS”, Hacettepe Journal of Mathematics and Statistics, vol. 42, no. 5, pp. 517–524, 2013.
ISNAD Sorgun, S. et al. “AN UPPER BOUND ON THE SPECTRAL RADIUS OF WEIGHTED GRAPHS”. Hacettepe Journal of Mathematics and Statistics 42/5 (May 2013), 517-524.
JAMA Sorgun S, Büyükköse Ş, Özarslan HS. AN UPPER BOUND ON THE SPECTRAL RADIUS OF WEIGHTED GRAPHS. Hacettepe Journal of Mathematics and Statistics. 2013;42:517–524.
MLA Sorgun, S. et al. “AN UPPER BOUND ON THE SPECTRAL RADIUS OF WEIGHTED GRAPHS”. Hacettepe Journal of Mathematics and Statistics, vol. 42, no. 5, 2013, pp. 517-24.
Vancouver Sorgun S, Büyükköse Ş, Özarslan HS. AN UPPER BOUND ON THE SPECTRAL RADIUS OF WEIGHTED GRAPHS. Hacettepe Journal of Mathematics and Statistics. 2013;42(5):517-24.