A module M is called an absolute co-coclosed (absolute co-supplement)module if whenever M ∼= T /X the submodule X of T is a coclosed (supplement) submodule of T .are absolute co-coclosed (absolute co-supplement) are precisely determined. We also investigate the rings whose (finitely generated) absolute co-supplement modules are projective. We show that a commutative domain R is a Dedekind domain if and only if every submodule of an absolute co-supplement R-module is absolute co-supplement.We also prove that the class Coclosed of all short exact sequences
Anderson, F. W. and Fuller, K. R. Rings and Categories of Modules (New York: Springer, 19) Clark, J., Keskin T¨ut¨unc¨u D. and Tribak, R. Supplement submodules of injective modules, Comm. Algebra. 39, 4390–4402, 2011.
Clark, J., Lomp, C., Vanaja N. and Wisbauer, R. Lifting Modules, Supplements and Pro- jectivity in Module Theory (Frontiers in Math. Boston: Birkh¨auser, 2006.)
Dung, N. V., Hyunh, D. V., Smith P. F. and Wisbauer, R. Extending Modules, Pitman Research Notes in Mathematics Series (UK: Longman Scientific and Technical, 1994.) Erdo˘gan, (M. http://library.iyte.edu.tr/tezler/master/matematik/T000339.pdf. Institute Complement Modules Sc. ˙Izmir of Technology, 2004) Electronic copy:
Ganesan, L. and Vanaja, N. Modules for which every submodule has a unique coclosure, Comm. Algebra. 30 (5), 2355–2377, 2002.
Generalov, A. I. The ω-cohigh purity in a categories of modules, Math. Notes 33 (5-6) 402–408. Translated from Russian from Mat. Zametki 33 (5), 758–796, 1983.
Gerasimov, V. N. and Sakhaev, I. I. A counter example to two hypotheses on projective and flat modules, Sib. Mat. Zh. 25 (6), 31–35, 1984. English translation: Sib. Math. J. 24, 855–859, 1984.
Goodearl, K. R. Ring Theory: Nonsingular Rings and Modules (New York and Basel: Marcel Dekker Inc., 1976.)
Lam, T. Y. Lectures on Modules and Rings (New York, Berlin, Heidelberg: Springer, 1999.)
Mermut, E. Homological Approach to Complements and Supplements (Ph.D. dissertation, Dokuz Eyl¨ul University, 2004.)
Mishina A. P. and Skornyakov, L. A. Abelian groups and modules, American Mathematical Society Translations Series 2, 107, 1976. Translated from Russian from Abelevy gruppy i moduli, Izdat. Nauka, 1969.
Mohammed, A. and Sandomierski, F. L. Complements in projective modules, J. Algebra 127, 206–217, 1989.
Mohamed, S. H. and M¨uller, B. J. Continuous and Discrete Modules (London Math. Soc. Lecture Notes Series 147, Cambridge, 1990.)
Sklyarenko, E. G. Relative homological algebra in categories of modules, Russian Math. Surveys 33 (3), 97–137, 1978. Traslated from Russian from Uspehi Mat. Nauk 33 3(201), 85-120, 1978.
Talebi, Y. and Vanaja, N. The torsion theory cogenerated by M -small modules,Comm. Algebra 30 (3), 1449–1460, 2002.
Warfield, R. B. Jr. Serial rings and finitely presented modules, J. Algebra 37, 187–222, 1975.
Z¨oschinger, H. Projektive Moduln mit endlich erzeugtem Radikalfaktormodul, Math. Ann. 255 199–206, 1981.
Anderson, F. W. and Fuller, K. R. Rings and Categories of Modules (New York: Springer, 19) Clark, J., Keskin T¨ut¨unc¨u D. and Tribak, R. Supplement submodules of injective modules, Comm. Algebra. 39, 4390–4402, 2011.
Clark, J., Lomp, C., Vanaja N. and Wisbauer, R. Lifting Modules, Supplements and Pro- jectivity in Module Theory (Frontiers in Math. Boston: Birkh¨auser, 2006.)
Dung, N. V., Hyunh, D. V., Smith P. F. and Wisbauer, R. Extending Modules, Pitman Research Notes in Mathematics Series (UK: Longman Scientific and Technical, 1994.) Erdo˘gan, (M. http://library.iyte.edu.tr/tezler/master/matematik/T000339.pdf. Institute Complement Modules Sc. ˙Izmir of Technology, 2004) Electronic copy:
Ganesan, L. and Vanaja, N. Modules for which every submodule has a unique coclosure, Comm. Algebra. 30 (5), 2355–2377, 2002.
Generalov, A. I. The ω-cohigh purity in a categories of modules, Math. Notes 33 (5-6) 402–408. Translated from Russian from Mat. Zametki 33 (5), 758–796, 1983.
Gerasimov, V. N. and Sakhaev, I. I. A counter example to two hypotheses on projective and flat modules, Sib. Mat. Zh. 25 (6), 31–35, 1984. English translation: Sib. Math. J. 24, 855–859, 1984.
Goodearl, K. R. Ring Theory: Nonsingular Rings and Modules (New York and Basel: Marcel Dekker Inc., 1976.)
Lam, T. Y. Lectures on Modules and Rings (New York, Berlin, Heidelberg: Springer, 1999.)
Mermut, E. Homological Approach to Complements and Supplements (Ph.D. dissertation, Dokuz Eyl¨ul University, 2004.)
Mishina A. P. and Skornyakov, L. A. Abelian groups and modules, American Mathematical Society Translations Series 2, 107, 1976. Translated from Russian from Abelevy gruppy i moduli, Izdat. Nauka, 1969.
Mohammed, A. and Sandomierski, F. L. Complements in projective modules, J. Algebra 127, 206–217, 1989.
Mohamed, S. H. and M¨uller, B. J. Continuous and Discrete Modules (London Math. Soc. Lecture Notes Series 147, Cambridge, 1990.)
Sklyarenko, E. G. Relative homological algebra in categories of modules, Russian Math. Surveys 33 (3), 97–137, 1978. Traslated from Russian from Uspehi Mat. Nauk 33 3(201), 85-120, 1978.
Talebi, Y. and Vanaja, N. The torsion theory cogenerated by M -small modules,Comm. Algebra 30 (3), 1449–1460, 2002.
Warfield, R. B. Jr. Serial rings and finitely presented modules, J. Algebra 37, 187–222, 1975.
Z¨oschinger, H. Projektive Moduln mit endlich erzeugtem Radikalfaktormodul, Math. Ann. 255 199–206, 1981.
Tütüncü, D. K., & Toksoy, S. E. (2013). ABSOLUTE CO-SUPPLEMENT AND ABSOLUTE CO-COCLOSED MODULES. Hacettepe Journal of Mathematics and Statistics, 42(1), 67-79.
AMA
Tütüncü DK, Toksoy SE. ABSOLUTE CO-SUPPLEMENT AND ABSOLUTE CO-COCLOSED MODULES. Hacettepe Journal of Mathematics and Statistics. January 2013;42(1):67-79.
Chicago
Tütüncü, Derya Keskin, and Sultan Eylem Toksoy. “ABSOLUTE CO-SUPPLEMENT AND ABSOLUTE CO-COCLOSED MODULES”. Hacettepe Journal of Mathematics and Statistics 42, no. 1 (January 2013): 67-79.
EndNote
Tütüncü DK, Toksoy SE (January 1, 2013) ABSOLUTE CO-SUPPLEMENT AND ABSOLUTE CO-COCLOSED MODULES. Hacettepe Journal of Mathematics and Statistics 42 1 67–79.
IEEE
D. K. Tütüncü and S. E. Toksoy, “ABSOLUTE CO-SUPPLEMENT AND ABSOLUTE CO-COCLOSED MODULES”, Hacettepe Journal of Mathematics and Statistics, vol. 42, no. 1, pp. 67–79, 2013.
ISNAD
Tütüncü, Derya Keskin - Toksoy, Sultan Eylem. “ABSOLUTE CO-SUPPLEMENT AND ABSOLUTE CO-COCLOSED MODULES”. Hacettepe Journal of Mathematics and Statistics 42/1 (January 2013), 67-79.
JAMA
Tütüncü DK, Toksoy SE. ABSOLUTE CO-SUPPLEMENT AND ABSOLUTE CO-COCLOSED MODULES. Hacettepe Journal of Mathematics and Statistics. 2013;42:67–79.
MLA
Tütüncü, Derya Keskin and Sultan Eylem Toksoy. “ABSOLUTE CO-SUPPLEMENT AND ABSOLUTE CO-COCLOSED MODULES”. Hacettepe Journal of Mathematics and Statistics, vol. 42, no. 1, 2013, pp. 67-79.
Vancouver
Tütüncü DK, Toksoy SE. ABSOLUTE CO-SUPPLEMENT AND ABSOLUTE CO-COCLOSED MODULES. Hacettepe Journal of Mathematics and Statistics. 2013;42(1):67-79.