BibTex RIS Cite

A Prey Predator Model with Fuzzy Initial Values

Year 2012, Volume: 41 Issue: 3, 387 - 395, 01.03.2012

References

  • Bede, B. and Gal, S. G. Generalizations of the differentiability of fuzzy number valued func- tions with applications to fuzzy differential equation, Fuzzy Sets and Systems 151, 581–599, 2005.
  • Bede, B., Rudas, I. J. and Bencsik, A. L. First order linear fuzzy differential equations under generalized differentiability, Inform. Sci. 177, 1648–1662, 2007.
  • Chalco-Cano, Y. and Rom´an-Flores, H. On the new solution of fuzzy differential equations, Chaos Solitons Fractals 38, 112–119, 2006.
  • Gal, S. G. Approximation theory in fuzzy setting, in: G. A. Anastassiou (Ed.), Handbook of Analytic-Computational Methods in Applied Mathematics (Chapman & Hall/CRC Press, Boca Raton, FL, 2000), 617–666.
  • Kaleva, O. Fuzzy differential equations, Fuzzy Sets and Systems 24, 301–317, 1987.
  • Khastan, A., Bahrami, F. and Ivaz, K. New results on multiple solutions for nth-order fuzzy differential equations under generalized differentiability, boundary value problems 2009, Ar- ticle ID 395714, 2009.
  • Khastan, A. Fuzzy Differential Equations, SciTopics, 2010: Retrieved February 6, 2012, from http://www.scitopics.com/Fuzzy Differential Equations.html.
  • Puri, M. and Ralescu, D. Differential and fuzzy functions, J. Math. Anal. Appl. 91, 552–558, 1983.
  • Wu, C. and Gong, Z. On Henstock integral of fuzzy-number-valued functions I, Fuzzy Sets and Systems 120, 523–532, 2001.

A Prey Predator Model with Fuzzy Initial Values

Year 2012, Volume: 41 Issue: 3, 387 - 395, 01.03.2012

References

  • Bede, B. and Gal, S. G. Generalizations of the differentiability of fuzzy number valued func- tions with applications to fuzzy differential equation, Fuzzy Sets and Systems 151, 581–599, 2005.
  • Bede, B., Rudas, I. J. and Bencsik, A. L. First order linear fuzzy differential equations under generalized differentiability, Inform. Sci. 177, 1648–1662, 2007.
  • Chalco-Cano, Y. and Rom´an-Flores, H. On the new solution of fuzzy differential equations, Chaos Solitons Fractals 38, 112–119, 2006.
  • Gal, S. G. Approximation theory in fuzzy setting, in: G. A. Anastassiou (Ed.), Handbook of Analytic-Computational Methods in Applied Mathematics (Chapman & Hall/CRC Press, Boca Raton, FL, 2000), 617–666.
  • Kaleva, O. Fuzzy differential equations, Fuzzy Sets and Systems 24, 301–317, 1987.
  • Khastan, A., Bahrami, F. and Ivaz, K. New results on multiple solutions for nth-order fuzzy differential equations under generalized differentiability, boundary value problems 2009, Ar- ticle ID 395714, 2009.
  • Khastan, A. Fuzzy Differential Equations, SciTopics, 2010: Retrieved February 6, 2012, from http://www.scitopics.com/Fuzzy Differential Equations.html.
  • Puri, M. and Ralescu, D. Differential and fuzzy functions, J. Math. Anal. Appl. 91, 552–558, 1983.
  • Wu, C. and Gong, Z. On Henstock integral of fuzzy-number-valued functions I, Fuzzy Sets and Systems 120, 523–532, 2001.
There are 9 citations in total.

Details

Primary Language Turkish
Journal Section Mathematics
Authors

Ömer Akın This is me

Ömer Oruç This is me

Publication Date March 1, 2012
Published in Issue Year 2012 Volume: 41 Issue: 3

Cite

APA Akın, Ö., & Oruç, Ö. (2012). A Prey Predator Model with Fuzzy Initial Values. Hacettepe Journal of Mathematics and Statistics, 41(3), 387-395.
AMA Akın Ö, Oruç Ö. A Prey Predator Model with Fuzzy Initial Values. Hacettepe Journal of Mathematics and Statistics. March 2012;41(3):387-395.
Chicago Akın, Ömer, and Ömer Oruç. “A Prey Predator Model With Fuzzy Initial Values”. Hacettepe Journal of Mathematics and Statistics 41, no. 3 (March 2012): 387-95.
EndNote Akın Ö, Oruç Ö (March 1, 2012) A Prey Predator Model with Fuzzy Initial Values. Hacettepe Journal of Mathematics and Statistics 41 3 387–395.
IEEE Ö. Akın and Ö. Oruç, “A Prey Predator Model with Fuzzy Initial Values”, Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 3, pp. 387–395, 2012.
ISNAD Akın, Ömer - Oruç, Ömer. “A Prey Predator Model With Fuzzy Initial Values”. Hacettepe Journal of Mathematics and Statistics 41/3 (March 2012), 387-395.
JAMA Akın Ö, Oruç Ö. A Prey Predator Model with Fuzzy Initial Values. Hacettepe Journal of Mathematics and Statistics. 2012;41:387–395.
MLA Akın, Ömer and Ömer Oruç. “A Prey Predator Model With Fuzzy Initial Values”. Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 3, 2012, pp. 387-95.
Vancouver Akın Ö, Oruç Ö. A Prey Predator Model with Fuzzy Initial Values. Hacettepe Journal of Mathematics and Statistics. 2012;41(3):387-95.