Research Article
BibTex RIS Cite

FUZZY SOFT TOPOLOGY

Year 2012, Volume: 41 Issue: 3, 407 - 419, 01.03.2012

Abstract

References

  • [1] Ahmat, B. and Kharal, A. On fuzzy soft sets, Hindawi Publishing Corporation, Advances in Fuzzy Systems, Article ID 586507, 6 pages, 2009.
  • [2] Akta¸s, H. and C¸ aˇgman, N. Soft sets and soft group, Information Science 177, 2726–2735, 2007.
  • [3] Ayg¨unoˇglu, A. and Ayg¨un, H. Introduction to fuzzy soft groups, Computers and Mathematics with Applications 58, 1279–1286, 2009.
  • [4] Chang, C. L. Fuzzy topological spaces, J. Math. Appl. 24, 182–193, 1968.
  • [5] Chen, D., Tsang, E. C, C., Yeung, D. S. and Wang, X. The parameterization reduction of soft set and its applications, Computers and Mathematics with Applications 49, 757–763, 2005.
  • [6] C¸ aˇgman, N. and Eng´ınoˇglu, N. S. Soft set theory and uni-int decision making, European Journal of Operational Research 207, 848855, 2010.
  • [7] Feng, F., Jun, Y. B. and Zhao, X. Soft semirings, Computers and Mathematics with Applications 56, 2621–2628, 2008.
  • [8] Kharal, A. and Ahmad, B. Mappings on fuzzy soft classes, Hindawi Publishing Corporation, Advances in Fuzzy Systems, Article ID 407890, 6 pages, 2009.
  • [9] Lowen, R. Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56, 621– 633, 1976.
  • [10] Maji, P. K., Biswas, R. and Roy, A. R. Fuzzy soft sets, J. Fuzzy Math. 9 (3), 589–602, 2001.
  • [11] Maji, P. K., Biswas, R. and Roy, A. R. Soft set theory, Computers Math. Appl. 45, 555–562, 2003.
  • [12] Maji, P. K. and Roy, A. R. An application of soft set in decision making problem, Computers Math. Appl. 44, 1077–1083, 2002.
  • [13] Majumdar, P. and Samanta, S. K. Similarity measure of soft set, New Math. Nat. Comput. 4 (1), 1–12, 2008.
  • [14] Molodtsov, D. Soft set theory-First results, Computers Math. Appl. 37 (4/5), 19–31, 1999.
  • [15] Nazmul, S. and Samanta, S. K. Soft topological groups, Kochi J. Math. 5, 151–161, 2010.
  • [16] Varol, B. P., Shostak, A. P. and Ayg¨un, H. Categories related to topology viewed as soft sets, Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2011)1-1, 883–890, 2011.
  • [17] Rodabaugh, S. E. Powerset Operator Foundations For Poslat Fuzzy Set Theories and Topologies, Chapter 2 in Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, U. H¨ohle and S.E. Rodabaugh eds. (Kluwer Academic Publishers, 1999), 91–116.
  • [18] Shabir, M. and Naz, M. On soft topological spaces, Computers and Mathematics with Applications 61, 1786–1799, 2011.
  • [19] Tanay, B. and Kandemir, M. B. Topological structures of fuzzy soft sets, Computers and Mathematics with Applications 61, 412–418, 2011.
  • [20] Yang, X., Lin, T. S., Yang, J., Li, Y. and Yu, D. Combination of interval-valued fuzzy set and soft set, Computers and Mathematics with Applications 58, 521–527, 2009.
  • [21] Zadeh, L. A. Fuzzy sets, Information and Control 8, 338–353, 1965.

FUZZY SOFT TOPOLOGY

Year 2012, Volume: 41 Issue: 3, 407 - 419, 01.03.2012

Abstract

In the present paper we introduce the topological structure of fuzzy soft sets and fuzzy soft continuity of fuzzy soft mappings. We show that a fuzzy soft topological space gives a parametrized family of fuzzy topological spaces. Furthermore, with the help of an example it is shown that the constant mapping is not continuous in general. Then the notions of fuzzy soft closure and interior are introduced and their basic properties are investigated. Finally, the initial fuzzy soft topology and some properties of projection mappings are studied.

References

  • [1] Ahmat, B. and Kharal, A. On fuzzy soft sets, Hindawi Publishing Corporation, Advances in Fuzzy Systems, Article ID 586507, 6 pages, 2009.
  • [2] Akta¸s, H. and C¸ aˇgman, N. Soft sets and soft group, Information Science 177, 2726–2735, 2007.
  • [3] Ayg¨unoˇglu, A. and Ayg¨un, H. Introduction to fuzzy soft groups, Computers and Mathematics with Applications 58, 1279–1286, 2009.
  • [4] Chang, C. L. Fuzzy topological spaces, J. Math. Appl. 24, 182–193, 1968.
  • [5] Chen, D., Tsang, E. C, C., Yeung, D. S. and Wang, X. The parameterization reduction of soft set and its applications, Computers and Mathematics with Applications 49, 757–763, 2005.
  • [6] C¸ aˇgman, N. and Eng´ınoˇglu, N. S. Soft set theory and uni-int decision making, European Journal of Operational Research 207, 848855, 2010.
  • [7] Feng, F., Jun, Y. B. and Zhao, X. Soft semirings, Computers and Mathematics with Applications 56, 2621–2628, 2008.
  • [8] Kharal, A. and Ahmad, B. Mappings on fuzzy soft classes, Hindawi Publishing Corporation, Advances in Fuzzy Systems, Article ID 407890, 6 pages, 2009.
  • [9] Lowen, R. Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56, 621– 633, 1976.
  • [10] Maji, P. K., Biswas, R. and Roy, A. R. Fuzzy soft sets, J. Fuzzy Math. 9 (3), 589–602, 2001.
  • [11] Maji, P. K., Biswas, R. and Roy, A. R. Soft set theory, Computers Math. Appl. 45, 555–562, 2003.
  • [12] Maji, P. K. and Roy, A. R. An application of soft set in decision making problem, Computers Math. Appl. 44, 1077–1083, 2002.
  • [13] Majumdar, P. and Samanta, S. K. Similarity measure of soft set, New Math. Nat. Comput. 4 (1), 1–12, 2008.
  • [14] Molodtsov, D. Soft set theory-First results, Computers Math. Appl. 37 (4/5), 19–31, 1999.
  • [15] Nazmul, S. and Samanta, S. K. Soft topological groups, Kochi J. Math. 5, 151–161, 2010.
  • [16] Varol, B. P., Shostak, A. P. and Ayg¨un, H. Categories related to topology viewed as soft sets, Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2011)1-1, 883–890, 2011.
  • [17] Rodabaugh, S. E. Powerset Operator Foundations For Poslat Fuzzy Set Theories and Topologies, Chapter 2 in Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, U. H¨ohle and S.E. Rodabaugh eds. (Kluwer Academic Publishers, 1999), 91–116.
  • [18] Shabir, M. and Naz, M. On soft topological spaces, Computers and Mathematics with Applications 61, 1786–1799, 2011.
  • [19] Tanay, B. and Kandemir, M. B. Topological structures of fuzzy soft sets, Computers and Mathematics with Applications 61, 412–418, 2011.
  • [20] Yang, X., Lin, T. S., Yang, J., Li, Y. and Yu, D. Combination of interval-valued fuzzy set and soft set, Computers and Mathematics with Applications 58, 521–527, 2009.
  • [21] Zadeh, L. A. Fuzzy sets, Information and Control 8, 338–353, 1965.
There are 21 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Banu Pazar Varol This is me

Halis Aygün This is me

Publication Date March 1, 2012
Published in Issue Year 2012 Volume: 41 Issue: 3

Cite

APA Varol, B. P., & Aygün, H. (2012). FUZZY SOFT TOPOLOGY. Hacettepe Journal of Mathematics and Statistics, 41(3), 407-419.
AMA Varol BP, Aygün H. FUZZY SOFT TOPOLOGY. Hacettepe Journal of Mathematics and Statistics. March 2012;41(3):407-419.
Chicago Varol, Banu Pazar, and Halis Aygün. “FUZZY SOFT TOPOLOGY”. Hacettepe Journal of Mathematics and Statistics 41, no. 3 (March 2012): 407-19.
EndNote Varol BP, Aygün H (March 1, 2012) FUZZY SOFT TOPOLOGY. Hacettepe Journal of Mathematics and Statistics 41 3 407–419.
IEEE B. P. Varol and H. Aygün, “FUZZY SOFT TOPOLOGY”, Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 3, pp. 407–419, 2012.
ISNAD Varol, Banu Pazar - Aygün, Halis. “FUZZY SOFT TOPOLOGY”. Hacettepe Journal of Mathematics and Statistics 41/3 (March 2012), 407-419.
JAMA Varol BP, Aygün H. FUZZY SOFT TOPOLOGY. Hacettepe Journal of Mathematics and Statistics. 2012;41:407–419.
MLA Varol, Banu Pazar and Halis Aygün. “FUZZY SOFT TOPOLOGY”. Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 3, 2012, pp. 407-19.
Vancouver Varol BP, Aygün H. FUZZY SOFT TOPOLOGY. Hacettepe Journal of Mathematics and Statistics. 2012;41(3):407-19.