Research Article
BibTex RIS Cite

THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS

Year 2012, Volume: 41 Issue: 1, 119 - 126, 01.01.2012

Abstract

References

  • Alekseevsky, D. V., Cort´es, V. and Devchand, C. Special complex manifolds, J. Geom. Phys. 42(1-2), 85–105, 2002.
  • Binh, T. Q. On semi-symmetric connections, Period. Math. Hungar. 21 (2), 101–107, 1990.
  • Blaga, A. M. and Crasmareanu, M. The geometry of product conjugate connections, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 58 (2012), in press.
  • Calin, O., Matsuzoe, H. and Zhang, J. Generalizations of conjugate connections, in Trends in differential geometry, complex analysis and mathematical physics. Proceedings of 9th international workshop on complex structures, integrability and vector fields, Sofia, Bulgaria, August 25-29, 2008. (World Scientific, Hackensack NJ, 2009), 26–34.
  • Cruceanu, V. Almost product bicomplex structures on manifolds, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 51 (1), 99–118, 2005.
  • Gauduchon, P. Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B (7) 11 (2) suppl., 257–288, 1997.
  • Hiric˘a, I. E. and Nicolescu, L. On quarter-symmetric metric connections on pseudo- Riemannian manifolds, Balkan J. Geom. Appl. 16 (1), 56–65, 2011.
  • Ishihara, S. Quaternion K¨ahlerian manifolds, J. Diff. Geom. 9, 483–500, 1974.
  • Kirichenko, V. F. Method of generalized Hermitian geometry in the theory of almost contact manifold, Itogi Nauki i Tekhniki, Problems of geometry 18, 25–71, 1986; translated in J. Soviet. Math. 42 (5), 1885–1919, 1988.
  • Sch¨afer, L. tt*-geometry on the tangent bundle of an almost complex manifold, J. Geom.
  • Phys. 57 (3), 999–1014, 2007.

THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS

Year 2012, Volume: 41 Issue: 1, 119 - 126, 01.01.2012

Abstract

Properties of pairs of conjugate connections are stated with a special view towards the duality of these connections. We express the complex conjugate connections in terms of the structural and the virtual tensors from the almost complex geometry. For a pair of almost complex structures we discuss their mutual recurrence by pointing out that an almost quaternionic structure is implied. The notion of complex conjugate connections is extended in two directions, one called generalized obtained by adding a general (1, 2)-tensor field and the other called exponential since it involves the exponential of the almost complex structure considered.

References

  • Alekseevsky, D. V., Cort´es, V. and Devchand, C. Special complex manifolds, J. Geom. Phys. 42(1-2), 85–105, 2002.
  • Binh, T. Q. On semi-symmetric connections, Period. Math. Hungar. 21 (2), 101–107, 1990.
  • Blaga, A. M. and Crasmareanu, M. The geometry of product conjugate connections, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 58 (2012), in press.
  • Calin, O., Matsuzoe, H. and Zhang, J. Generalizations of conjugate connections, in Trends in differential geometry, complex analysis and mathematical physics. Proceedings of 9th international workshop on complex structures, integrability and vector fields, Sofia, Bulgaria, August 25-29, 2008. (World Scientific, Hackensack NJ, 2009), 26–34.
  • Cruceanu, V. Almost product bicomplex structures on manifolds, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 51 (1), 99–118, 2005.
  • Gauduchon, P. Hermitian connections and Dirac operators, Boll. Un. Mat. Ital. B (7) 11 (2) suppl., 257–288, 1997.
  • Hiric˘a, I. E. and Nicolescu, L. On quarter-symmetric metric connections on pseudo- Riemannian manifolds, Balkan J. Geom. Appl. 16 (1), 56–65, 2011.
  • Ishihara, S. Quaternion K¨ahlerian manifolds, J. Diff. Geom. 9, 483–500, 1974.
  • Kirichenko, V. F. Method of generalized Hermitian geometry in the theory of almost contact manifold, Itogi Nauki i Tekhniki, Problems of geometry 18, 25–71, 1986; translated in J. Soviet. Math. 42 (5), 1885–1919, 1988.
  • Sch¨afer, L. tt*-geometry on the tangent bundle of an almost complex manifold, J. Geom.
  • Phys. 57 (3), 999–1014, 2007.
There are 11 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Adara M. Blaga This is me

Mircea Crasmareanu This is me

Publication Date January 1, 2012
Published in Issue Year 2012 Volume: 41 Issue: 1

Cite

APA Blaga, A. M., & Crasmareanu, M. (2012). THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS. Hacettepe Journal of Mathematics and Statistics, 41(1), 119-126.
AMA Blaga AM, Crasmareanu M. THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS. Hacettepe Journal of Mathematics and Statistics. January 2012;41(1):119-126.
Chicago Blaga, Adara M., and Mircea Crasmareanu. “THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS”. Hacettepe Journal of Mathematics and Statistics 41, no. 1 (January 2012): 119-26.
EndNote Blaga AM, Crasmareanu M (January 1, 2012) THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS. Hacettepe Journal of Mathematics and Statistics 41 1 119–126.
IEEE A. M. Blaga and M. Crasmareanu, “THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS”, Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 1, pp. 119–126, 2012.
ISNAD Blaga, Adara M. - Crasmareanu, Mircea. “THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS”. Hacettepe Journal of Mathematics and Statistics 41/1 (January 2012), 119-126.
JAMA Blaga AM, Crasmareanu M. THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS. Hacettepe Journal of Mathematics and Statistics. 2012;41:119–126.
MLA Blaga, Adara M. and Mircea Crasmareanu. “THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS”. Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 1, 2012, pp. 119-26.
Vancouver Blaga AM, Crasmareanu M. THE GEOMETRY OF COMPLEX CONJUGATE CONNECTIONS. Hacettepe Journal of Mathematics and Statistics. 2012;41(1):119-26.