BibTex RIS Cite

3-Dimensional Quasi-Sasakian Manifolds with Semi-Symmetric Non-Metric Connection FULL TEXT

Year 2012, Volume: 41 Issue: 1, 127 - 137, 01.01.2012

References

  • Agashe, N. S. and Chafle, M. R. A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 23 (6), 399–409, 1992
  • Amur, K. and Pujar, S. S. Submanifolds of a Riemannian manifold with semi-symmetric metric connection, Tensor N. S. 32, 35–38, 1978.
  • Ahsan, Z. and Siddiqui, S. A. Concircular curvature tensor and fluid spacetimes, Interna- tional Journal of Theo. Physics 48, 3202–3212, 2009.
  • Blair, D. E. Contact Manifolds in Riemannian Geometry (Lecture Notes in Mathematics , Springer-Verlag, Berlin-New York, 1976).
  • Blair, D. E. Riemannian Geometry of Contact and Symplectic Manifolds (Progress in Math- ematics 203, Birkhauser Inc., Boston, 2002).
  • Blair, D. E., The theory of quasi-Sasakian structure, J. Differential Geo. 1, 331-345, 1967.
  • Blair, D. E., Kim, J. S. and Tripathi, M. M. On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc. 42, 883-892, 2005.
  • Cabrerizo, J. L., Fernandez, L. M., Fernandez, M. and Zhen, G. The structure of a class of K-contact manifolds, Acta Math. Hungar. 82 (4), 331–340, 1999.
  • Das, L., De, U. C., Singh, R. N. and Pandey, M. K. Lorentzian manifold admitting a type of semi-symmetric non-metric connection, Tensor N. S. 70, 78–85, 2008.
  • De, U. C. On a type of semi-symmetric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 2 (1), 334–338, 1990.
  • De, U. C. On a type of semi-symmetric connection on a Riemannian manifold, Ann. Stiint Univ. Al. I. Cuza Iasi Sect. Math. 37, 105–108, 1991.
  • Friedmann, A. and Schouten, J. A. ¨Uber die Geometrie der halbsymmetrischen ¨Ubertragun- gen, Math. Z. 21 (1), 211–223, 1924.
  • Gonzalez, J. C. and Chinea, D. Quasi-Sasakian homogeneous structures on the generalized Heisenberg group H(p, 1), Proc. Amer. Math. Soc. 105, 173–184, 1989.
  • Hayden, H. A. Subspace of a space with torsion, Proc. London Math. Soc. 34, 27–50, 1932.
  • Imai, T. Notes on semi-symmetric metric connections, Tensor N. S. 24, 293–96, 1972.
  • Kim, B. H. Fibred Riemannian spaces with quasi-Sasakian structure, Hiroshima Math. J. , 477–513, 1990.
  • Kanemaki, S. Quasi-Sasakian manifolds, Tohoku Math. J. 29, 227–233, 1977.
  • Kanemaki, S. On quasi-Sasakian manifolds, Differential Geometry Banach Center Publica- tions 12, 95–125, 1984.
  • Liang, Y. On semi-symmetric recurrent metric connection, Tensor N. S. 55, 107–102, 1994.
  • Nakao, Z. Submanifolds of a Riemannian manifold with semi-symmetric metric connection, Proc. Am. Math. Soc. 54, 261–66, 1976.
  • Oubina, J. A. New classes of almost contact metric structures, Publ. Math. Debrecen 32, –193, 1985.
  • Olszak, Z. Normal almost contact metric manifolds of dimension 3, Ann. Polon. Math. 47, –50, 1986.
  • Olszak, Z. On three dimensional conformally flat quasi-Sasakian manifold, Period Math. Hungar. 33 (2), 105–113, 1996.
  • Pravonovic, M. On pseudo symmetric semi-symmetric connection, Pub. De L’ Institu Math., Nouvelle Serie, 18 (32), 157–164, 1975.
  • Schouten, J. A. Ricci-calculus (Springer-Verlag, Berlin, 1954).
  • Sengupta, J., De, U. C. and Binh, T. Q. On a type of semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 31, 1659–1670, 2000.
  • Takahashi, T. Sasakian φ-symmetric spaces, Tohoku Math. J. 29, 91–113, 1977.
  • Tanno, S. Quasi-Sasalian structure of rank 2p + 1, J. Differential Geom. 5, 317–324, 1971.
  • Yano, K. Integral formulas in Riemannian Geometry (Marcel Dekker Inc., New York, 1970).
  • Yano, K. and Kon, M. Structures on Manifolds (World Scientific, Singapore, 1984).
  • Yano, K. On semi-symmetric φ-connection in a Sasakian manifold, Kodai Math. Sem. rep. , 150–158, 1977.
  • Zhen, G., Cabrerizo, J. L., Fernandez, L. M. and Fernandez, M. On ξ-conformally flat con- tact metric manifolds, Indian J. Pure Appl. Math. 28, 725–734, 1997.

3-Dimensional Quasi-Sasakian Manifolds with Semi-Symmetric Non-Metric Connection FULL TEXT

Year 2012, Volume: 41 Issue: 1, 127 - 137, 01.01.2012

References

  • Agashe, N. S. and Chafle, M. R. A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 23 (6), 399–409, 1992
  • Amur, K. and Pujar, S. S. Submanifolds of a Riemannian manifold with semi-symmetric metric connection, Tensor N. S. 32, 35–38, 1978.
  • Ahsan, Z. and Siddiqui, S. A. Concircular curvature tensor and fluid spacetimes, Interna- tional Journal of Theo. Physics 48, 3202–3212, 2009.
  • Blair, D. E. Contact Manifolds in Riemannian Geometry (Lecture Notes in Mathematics , Springer-Verlag, Berlin-New York, 1976).
  • Blair, D. E. Riemannian Geometry of Contact and Symplectic Manifolds (Progress in Math- ematics 203, Birkhauser Inc., Boston, 2002).
  • Blair, D. E., The theory of quasi-Sasakian structure, J. Differential Geo. 1, 331-345, 1967.
  • Blair, D. E., Kim, J. S. and Tripathi, M. M. On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc. 42, 883-892, 2005.
  • Cabrerizo, J. L., Fernandez, L. M., Fernandez, M. and Zhen, G. The structure of a class of K-contact manifolds, Acta Math. Hungar. 82 (4), 331–340, 1999.
  • Das, L., De, U. C., Singh, R. N. and Pandey, M. K. Lorentzian manifold admitting a type of semi-symmetric non-metric connection, Tensor N. S. 70, 78–85, 2008.
  • De, U. C. On a type of semi-symmetric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 2 (1), 334–338, 1990.
  • De, U. C. On a type of semi-symmetric connection on a Riemannian manifold, Ann. Stiint Univ. Al. I. Cuza Iasi Sect. Math. 37, 105–108, 1991.
  • Friedmann, A. and Schouten, J. A. ¨Uber die Geometrie der halbsymmetrischen ¨Ubertragun- gen, Math. Z. 21 (1), 211–223, 1924.
  • Gonzalez, J. C. and Chinea, D. Quasi-Sasakian homogeneous structures on the generalized Heisenberg group H(p, 1), Proc. Amer. Math. Soc. 105, 173–184, 1989.
  • Hayden, H. A. Subspace of a space with torsion, Proc. London Math. Soc. 34, 27–50, 1932.
  • Imai, T. Notes on semi-symmetric metric connections, Tensor N. S. 24, 293–96, 1972.
  • Kim, B. H. Fibred Riemannian spaces with quasi-Sasakian structure, Hiroshima Math. J. , 477–513, 1990.
  • Kanemaki, S. Quasi-Sasakian manifolds, Tohoku Math. J. 29, 227–233, 1977.
  • Kanemaki, S. On quasi-Sasakian manifolds, Differential Geometry Banach Center Publica- tions 12, 95–125, 1984.
  • Liang, Y. On semi-symmetric recurrent metric connection, Tensor N. S. 55, 107–102, 1994.
  • Nakao, Z. Submanifolds of a Riemannian manifold with semi-symmetric metric connection, Proc. Am. Math. Soc. 54, 261–66, 1976.
  • Oubina, J. A. New classes of almost contact metric structures, Publ. Math. Debrecen 32, –193, 1985.
  • Olszak, Z. Normal almost contact metric manifolds of dimension 3, Ann. Polon. Math. 47, –50, 1986.
  • Olszak, Z. On three dimensional conformally flat quasi-Sasakian manifold, Period Math. Hungar. 33 (2), 105–113, 1996.
  • Pravonovic, M. On pseudo symmetric semi-symmetric connection, Pub. De L’ Institu Math., Nouvelle Serie, 18 (32), 157–164, 1975.
  • Schouten, J. A. Ricci-calculus (Springer-Verlag, Berlin, 1954).
  • Sengupta, J., De, U. C. and Binh, T. Q. On a type of semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 31, 1659–1670, 2000.
  • Takahashi, T. Sasakian φ-symmetric spaces, Tohoku Math. J. 29, 91–113, 1977.
  • Tanno, S. Quasi-Sasalian structure of rank 2p + 1, J. Differential Geom. 5, 317–324, 1971.
  • Yano, K. Integral formulas in Riemannian Geometry (Marcel Dekker Inc., New York, 1970).
  • Yano, K. and Kon, M. Structures on Manifolds (World Scientific, Singapore, 1984).
  • Yano, K. On semi-symmetric φ-connection in a Sasakian manifold, Kodai Math. Sem. rep. , 150–158, 1977.
  • Zhen, G., Cabrerizo, J. L., Fernandez, L. M. and Fernandez, M. On ξ-conformally flat con- tact metric manifolds, Indian J. Pure Appl. Math. 28, 725–734, 1997.
There are 32 citations in total.

Details

Primary Language Turkish
Journal Section Mathematics
Authors

Uday C. De This is me

Ahmet Yildiz This is me

Mine Turan This is me

Bilal E. Acet This is me

Publication Date January 1, 2012
Published in Issue Year 2012 Volume: 41 Issue: 1

Cite

APA De, U. C., Yildiz, A., Turan, M., Acet, B. E. (2012). 3-Dimensional Quasi-Sasakian Manifolds with Semi-Symmetric Non-Metric Connection FULL TEXT. Hacettepe Journal of Mathematics and Statistics, 41(1), 127-137.
AMA De UC, Yildiz A, Turan M, Acet BE. 3-Dimensional Quasi-Sasakian Manifolds with Semi-Symmetric Non-Metric Connection FULL TEXT. Hacettepe Journal of Mathematics and Statistics. January 2012;41(1):127-137.
Chicago De, Uday C., Ahmet Yildiz, Mine Turan, and Bilal E. Acet. “3-Dimensional Quasi-Sasakian Manifolds With Semi-Symmetric Non-Metric Connection FULL TEXT”. Hacettepe Journal of Mathematics and Statistics 41, no. 1 (January 2012): 127-37.
EndNote De UC, Yildiz A, Turan M, Acet BE (January 1, 2012) 3-Dimensional Quasi-Sasakian Manifolds with Semi-Symmetric Non-Metric Connection FULL TEXT. Hacettepe Journal of Mathematics and Statistics 41 1 127–137.
IEEE U. C. De, A. Yildiz, M. Turan, and B. E. Acet, “3-Dimensional Quasi-Sasakian Manifolds with Semi-Symmetric Non-Metric Connection FULL TEXT”, Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 1, pp. 127–137, 2012.
ISNAD De, Uday C. et al. “3-Dimensional Quasi-Sasakian Manifolds With Semi-Symmetric Non-Metric Connection FULL TEXT”. Hacettepe Journal of Mathematics and Statistics 41/1 (January 2012), 127-137.
JAMA De UC, Yildiz A, Turan M, Acet BE. 3-Dimensional Quasi-Sasakian Manifolds with Semi-Symmetric Non-Metric Connection FULL TEXT. Hacettepe Journal of Mathematics and Statistics. 2012;41:127–137.
MLA De, Uday C. et al. “3-Dimensional Quasi-Sasakian Manifolds With Semi-Symmetric Non-Metric Connection FULL TEXT”. Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 1, 2012, pp. 127-3.
Vancouver De UC, Yildiz A, Turan M, Acet BE. 3-Dimensional Quasi-Sasakian Manifolds with Semi-Symmetric Non-Metric Connection FULL TEXT. Hacettepe Journal of Mathematics and Statistics. 2012;41(1):127-3.