Research Article
BibTex RIS Cite

Relative Metric Spaces

Year 2011, Volume: 40 Issue: 5, 703 - 709, 01.05.2011

Abstract

In this paper the notion of a relative metric space, as a mathematical model compatible with a physical phenomena, is considered. The notion of relative topological entropy for relative semi-dynamical systems on a relative metric space is studied. It is proved that observational topological entropy is an invariant object up to a relative conjugate relation. 

References

  • George, A. and Veeramani, P. On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems 90, 365–368, 1997.
  • Liu, B. A survay of entropy of fuzzy varables, Journal of Uncertain Systems 1 (1), 4–13, Liu, B. Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (1), –10, 2009.
  • Molaei, M. R. Observational modeling of topological spaces, Chaos, Solitons and Fractals 42, –619, 2009.
  • Molaei, M. R. Mathematical modeling of observers in physical systems, Journal of Dynamical Systems and Geometric Theories 4 (2), 183–186, 2006.
  • Molaei, M. R. Relative semi-dynamical systems, International Journal of Uncertainty, Fuzzi- ness and Knowledge-Based Systems, 12 (2), 237–243, 2004.
  • Molaei, M. R. and Hoseini Anvari, M. R. Relative manifolds, Intelligent Automation and Soft Computing 14 (2), 219–226, 2008.
  • Molaei, M. R., Hoseini Anvari, M. R. and Haqiri, T. On relative semi-dynamical systems, Intelligent Automation and Soft Computing, 13 (4), 405–413, 2007.
  • Petr, H. Metamathematics of Fuzzy Logic (Dordrecht: Kluwer, ISBN 0792352389, 1998).
  • Rahmat, M. R. S. and Noorani, M. S. M., Product of fuzzy metric spaces and fixed point theorems, Int. J. Contemp. Math. Sciences 3 (15), 703–712, 2008.
  • Ramadan, A. A. and Abd El-latif, A. A. Supra fuzzy convergence of fuzzy filters, Bull. Korean Math. Soc. 45, 207–220, 2008.
  • Rao, K. P. R., Babu, G. R. and Fisher, B. Common fixed point theorems in fuzzy metric spaces under implicit relations, Hacet. J. Math. Stat. 37 (2), 97–106, 2008.
  • Ray, A. D. and Saha, P. K. Fixed point theorems on generalized fuzzy metric spaces, Hacet. J. Math. Stat. 39 (1), 1–9, 2010.
  • Sostak, A. Two decades of fuzzy topology: Basic ideas, notions and results, Russian Math- ematical Surveys 44 (6), 125–186, 1989.
  • Wang, G. J. Theory of topological molecular lattices, Fuzzy Sets and Systems 47 (3), 351– , 1992.
  • Zadeh, L. A. Fuzzy sets, Inform. and Control 8, 338–353, 1965.

Relative Metric Spaces

Year 2011, Volume: 40 Issue: 5, 703 - 709, 01.05.2011

Abstract

References

  • George, A. and Veeramani, P. On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems 90, 365–368, 1997.
  • Liu, B. A survay of entropy of fuzzy varables, Journal of Uncertain Systems 1 (1), 4–13, Liu, B. Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (1), –10, 2009.
  • Molaei, M. R. Observational modeling of topological spaces, Chaos, Solitons and Fractals 42, –619, 2009.
  • Molaei, M. R. Mathematical modeling of observers in physical systems, Journal of Dynamical Systems and Geometric Theories 4 (2), 183–186, 2006.
  • Molaei, M. R. Relative semi-dynamical systems, International Journal of Uncertainty, Fuzzi- ness and Knowledge-Based Systems, 12 (2), 237–243, 2004.
  • Molaei, M. R. and Hoseini Anvari, M. R. Relative manifolds, Intelligent Automation and Soft Computing 14 (2), 219–226, 2008.
  • Molaei, M. R., Hoseini Anvari, M. R. and Haqiri, T. On relative semi-dynamical systems, Intelligent Automation and Soft Computing, 13 (4), 405–413, 2007.
  • Petr, H. Metamathematics of Fuzzy Logic (Dordrecht: Kluwer, ISBN 0792352389, 1998).
  • Rahmat, M. R. S. and Noorani, M. S. M., Product of fuzzy metric spaces and fixed point theorems, Int. J. Contemp. Math. Sciences 3 (15), 703–712, 2008.
  • Ramadan, A. A. and Abd El-latif, A. A. Supra fuzzy convergence of fuzzy filters, Bull. Korean Math. Soc. 45, 207–220, 2008.
  • Rao, K. P. R., Babu, G. R. and Fisher, B. Common fixed point theorems in fuzzy metric spaces under implicit relations, Hacet. J. Math. Stat. 37 (2), 97–106, 2008.
  • Ray, A. D. and Saha, P. K. Fixed point theorems on generalized fuzzy metric spaces, Hacet. J. Math. Stat. 39 (1), 1–9, 2010.
  • Sostak, A. Two decades of fuzzy topology: Basic ideas, notions and results, Russian Math- ematical Surveys 44 (6), 125–186, 1989.
  • Wang, G. J. Theory of topological molecular lattices, Fuzzy Sets and Systems 47 (3), 351– , 1992.
  • Zadeh, L. A. Fuzzy sets, Inform. and Control 8, 338–353, 1965.
There are 15 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

M. Malziri This is me

M.r. Molaei This is me

Publication Date May 1, 2011
Published in Issue Year 2011 Volume: 40 Issue: 5

Cite

APA Malziri, M., & Molaei, M. (2011). Relative Metric Spaces. Hacettepe Journal of Mathematics and Statistics, 40(5), 703-709.
AMA Malziri M, Molaei M. Relative Metric Spaces. Hacettepe Journal of Mathematics and Statistics. May 2011;40(5):703-709.
Chicago Malziri, M., and M.r. Molaei. “Relative Metric Spaces”. Hacettepe Journal of Mathematics and Statistics 40, no. 5 (May 2011): 703-9.
EndNote Malziri M, Molaei M (May 1, 2011) Relative Metric Spaces. Hacettepe Journal of Mathematics and Statistics 40 5 703–709.
IEEE M. Malziri and M. Molaei, “Relative Metric Spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 5, pp. 703–709, 2011.
ISNAD Malziri, M. - Molaei, M.r. “Relative Metric Spaces”. Hacettepe Journal of Mathematics and Statistics 40/5 (May 2011), 703-709.
JAMA Malziri M, Molaei M. Relative Metric Spaces. Hacettepe Journal of Mathematics and Statistics. 2011;40:703–709.
MLA Malziri, M. and M.r. Molaei. “Relative Metric Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 5, 2011, pp. 703-9.
Vancouver Malziri M, Molaei M. Relative Metric Spaces. Hacettepe Journal of Mathematics and Statistics. 2011;40(5):703-9.