BibTex RIS Cite

Selection of One-Stage Sample Size in Chen-Chen-Chang's tilde R Test and an Evaluation of the Performance of tilde R  ABSTRACT  |  FULL TEXT  Hacettepe Journal of Mathematics and Statistics

Year 2010, Volume: 39 Issue: 4, 613 - 626, 01.04.2010

References

  • Archambault, W. A. T., Mack, G. A. and Wolfe, D. A. K-sample rank tests using pair-specific scoring functions, Canad. J. Statist. 5, 195–207, 1977.
  • Bartholomew, D. J. Ordered tests in the analysis of variance, Biometrika 48, 325–332, 1961. [3] Bishop, T. A. Heteroscedastic ANOVA, MANOVA and multiple comparisons (Unpublished Ph.D. Thesis, The Ohio State University, Ohio, 1976).
  • Bishop, T. A. and Dudewicz, E. J. Exact analysis of variance with unequal variances: Test procedures and tables, Technometrics 20, 419–430, 1978.
  • Bishop, T. A. and Dudewicz, E. J. Heteroscedastic ANOVA, Sankhya 43(B), 40–57, 1981. [6] Bucchianico, A. D. Computer algebra, combinatorics, and the Wilcoxon-Mann-Whitney statistic, J. Stat. Plan. Inf. 79, 349–364, 1999.
  • Chacko, V. J. Testing homogeneity against ordered alternatives, Ann. Math. Statist. 34, 945–956, 1963.
  • Chen, S. One-stage and two-stage statistical inference under heteroscedasticity, Communi- cations in Statistics: Simulation and Computation 30 (4), 991–1009, 2001.
  • Chen, S. and Chen, J. H. Single-stage analysis of variance under heteroscedasticity, Com- munications Comm. Statist. Simulation 27 (3), 641–666, 1998.
  • Chen, S., Chen, J. H., and Chang, H. F. A one-stage procedure for testing homogeneity of means against an ordered alternative under unequal variances, Communications in Statis- tics: Simulation and Computation 33 (1), 49–67, 2004.
  • Daniel, W. W. Applied nonparametric statistics (Houghton Mifflin, Boston, 1978).
  • Gamage, J., Mathew, T., and Weerahandi, S. Generalized p-values and generalized confi- dence regions for the multivariate Behrens-Fisher problem and MANOVA, J. Multivariate Anal. 88, 177–189, 2004.
  • Gerami, A. and Zahedian, A. Comparing the means of normal populations with unequal variances(Proceedings of the 53rd Session of International Statistical Institute, Seoul, Korea 2001).
  • Gibbons, J. D. Nonparametric Statistical Inference (McGraw-Hill Book Company, New York, 1971).
  • Hettmansperger. T. P. and Norton, R. M. Tests for patterned alternatives in k-sample prob- lems, Journal of the American Statistical Association 82, 292–299, 1987.
  • Jonckheere, A. R. A distribution-free k-sample test against ordered alternatives, Biometrika 41, 133–145, 1954.
  • Lee, S. and Ahn, C. H. Modified ANOVA for unequal variances, Communications in Statis- tics: Simulation and Computation 32, 987–1004, 2003.
  • Odeh, R. E. On Jonckheere’s k-sample test against ordered alternatives, Technometrics 13, 912–918, 1971.
  • Puri, M. L. Some distribution-free k-sample rank tests of homogeneity against ordered al- ternatives, Comm. Pure Appl. Math. 18, 51–63. 1965.
  • Rice, W. R. and Gaines, S. D. One-way analysis of variance with unequal variances, Proc. Nat. Acad. Sci. 86, 8183–8184, 1989.
  • Terpstra, T. J. The asymptotic normality and consistency of Kendall’s test against trend, when ties are present in one ranking, Indigationes Mathematicae 14, 327–333, 1952.
  • Weerahandi, S. ANOVA under unequal error variances, Biometrics 51, 589–599, 1995.
  • Wiel, M. A. Exact distributions of distribution-free test statistics (Ph.D. Thesis, Eindhoven University of Technology, The Netherlands, 2000).
  • Xu, L. and Wang, S. A. New generalized p-value and its upper bound for ANOVA under unequal error variances, Commun Stat Theory Methods 37, 1002–1010, 2008.
  • Xu, L. and Wang, S. A. A new generalized p-value for ANOVA under heteroscedasticity, Statistics & Probability Letters 78 (8), 963–969, 2008.

Selection of One-Stage Sample Size in Chen-Chen-Chang's tilde R Test and an Evaluation of the Performance of tilde R  ABSTRACT  |  FULL TEXT  Hacettepe Journal of Mathematics and Statistics

Year 2010, Volume: 39 Issue: 4, 613 - 626, 01.04.2010

References

  • Archambault, W. A. T., Mack, G. A. and Wolfe, D. A. K-sample rank tests using pair-specific scoring functions, Canad. J. Statist. 5, 195–207, 1977.
  • Bartholomew, D. J. Ordered tests in the analysis of variance, Biometrika 48, 325–332, 1961. [3] Bishop, T. A. Heteroscedastic ANOVA, MANOVA and multiple comparisons (Unpublished Ph.D. Thesis, The Ohio State University, Ohio, 1976).
  • Bishop, T. A. and Dudewicz, E. J. Exact analysis of variance with unequal variances: Test procedures and tables, Technometrics 20, 419–430, 1978.
  • Bishop, T. A. and Dudewicz, E. J. Heteroscedastic ANOVA, Sankhya 43(B), 40–57, 1981. [6] Bucchianico, A. D. Computer algebra, combinatorics, and the Wilcoxon-Mann-Whitney statistic, J. Stat. Plan. Inf. 79, 349–364, 1999.
  • Chacko, V. J. Testing homogeneity against ordered alternatives, Ann. Math. Statist. 34, 945–956, 1963.
  • Chen, S. One-stage and two-stage statistical inference under heteroscedasticity, Communi- cations in Statistics: Simulation and Computation 30 (4), 991–1009, 2001.
  • Chen, S. and Chen, J. H. Single-stage analysis of variance under heteroscedasticity, Com- munications Comm. Statist. Simulation 27 (3), 641–666, 1998.
  • Chen, S., Chen, J. H., and Chang, H. F. A one-stage procedure for testing homogeneity of means against an ordered alternative under unequal variances, Communications in Statis- tics: Simulation and Computation 33 (1), 49–67, 2004.
  • Daniel, W. W. Applied nonparametric statistics (Houghton Mifflin, Boston, 1978).
  • Gamage, J., Mathew, T., and Weerahandi, S. Generalized p-values and generalized confi- dence regions for the multivariate Behrens-Fisher problem and MANOVA, J. Multivariate Anal. 88, 177–189, 2004.
  • Gerami, A. and Zahedian, A. Comparing the means of normal populations with unequal variances(Proceedings of the 53rd Session of International Statistical Institute, Seoul, Korea 2001).
  • Gibbons, J. D. Nonparametric Statistical Inference (McGraw-Hill Book Company, New York, 1971).
  • Hettmansperger. T. P. and Norton, R. M. Tests for patterned alternatives in k-sample prob- lems, Journal of the American Statistical Association 82, 292–299, 1987.
  • Jonckheere, A. R. A distribution-free k-sample test against ordered alternatives, Biometrika 41, 133–145, 1954.
  • Lee, S. and Ahn, C. H. Modified ANOVA for unequal variances, Communications in Statis- tics: Simulation and Computation 32, 987–1004, 2003.
  • Odeh, R. E. On Jonckheere’s k-sample test against ordered alternatives, Technometrics 13, 912–918, 1971.
  • Puri, M. L. Some distribution-free k-sample rank tests of homogeneity against ordered al- ternatives, Comm. Pure Appl. Math. 18, 51–63. 1965.
  • Rice, W. R. and Gaines, S. D. One-way analysis of variance with unequal variances, Proc. Nat. Acad. Sci. 86, 8183–8184, 1989.
  • Terpstra, T. J. The asymptotic normality and consistency of Kendall’s test against trend, when ties are present in one ranking, Indigationes Mathematicae 14, 327–333, 1952.
  • Weerahandi, S. ANOVA under unequal error variances, Biometrics 51, 589–599, 1995.
  • Wiel, M. A. Exact distributions of distribution-free test statistics (Ph.D. Thesis, Eindhoven University of Technology, The Netherlands, 2000).
  • Xu, L. and Wang, S. A. New generalized p-value and its upper bound for ANOVA under unequal error variances, Commun Stat Theory Methods 37, 1002–1010, 2008.
  • Xu, L. and Wang, S. A. A new generalized p-value for ANOVA under heteroscedasticity, Statistics & Probability Letters 78 (8), 963–969, 2008.
There are 23 citations in total.

Details

Primary Language Turkish
Journal Section Mathematics
Authors

B. Altunkaynak This is me

 h. Gamgam This is me

Publication Date April 1, 2010
Published in Issue Year 2010 Volume: 39 Issue: 4

Cite

APA Altunkaynak, B., & Gamgam, . (2010). Selection of One-Stage Sample Size in Chen-Chen-Chang’s tilde R Test and an Evaluation of the Performance of tilde R  ABSTRACT  |  FULL TEXT  Hacettepe Journal of Mathematics and Statistics. Hacettepe Journal of Mathematics and Statistics, 39(4), 613-626.
AMA Altunkaynak B, Gamgam . Selection of One-Stage Sample Size in Chen-Chen-Chang’s tilde R Test and an Evaluation of the Performance of tilde R  ABSTRACT  |  FULL TEXT  Hacettepe Journal of Mathematics and Statistics. Hacettepe Journal of Mathematics and Statistics. April 2010;39(4):613-626.
Chicago Altunkaynak, B., and  h. Gamgam. “Selection of One-Stage Sample Size in Chen-Chen-Chang’s Tilde R Test and an Evaluation of the Performance of Tilde R  ABSTRACT  |  FULL TEXT  Hacettepe Journal of Mathematics and Statistics”. Hacettepe Journal of Mathematics and Statistics 39, no. 4 (April 2010): 613-26.
EndNote Altunkaynak B, Gamgam  (April 1, 2010) Selection of One-Stage Sample Size in Chen-Chen-Chang’s tilde R Test and an Evaluation of the Performance of tilde R  ABSTRACT  |  FULL TEXT  Hacettepe Journal of Mathematics and Statistics. Hacettepe Journal of Mathematics and Statistics 39 4 613–626.
IEEE B. Altunkaynak and  . Gamgam, “Selection of One-Stage Sample Size in Chen-Chen-Chang’s tilde R Test and an Evaluation of the Performance of tilde R  ABSTRACT  |  FULL TEXT  Hacettepe Journal of Mathematics and Statistics”, Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 4, pp. 613–626, 2010.
ISNAD Altunkaynak, B. - Gamgam, h. “Selection of One-Stage Sample Size in Chen-Chen-Chang’s Tilde R Test and an Evaluation of the Performance of Tilde R  ABSTRACT  |  FULL TEXT  Hacettepe Journal of Mathematics and Statistics”. Hacettepe Journal of Mathematics and Statistics 39/4 (April 2010), 613-626.
JAMA Altunkaynak B, Gamgam . Selection of One-Stage Sample Size in Chen-Chen-Chang’s tilde R Test and an Evaluation of the Performance of tilde R  ABSTRACT  |  FULL TEXT  Hacettepe Journal of Mathematics and Statistics. Hacettepe Journal of Mathematics and Statistics. 2010;39:613–626.
MLA Altunkaynak, B. and  h. Gamgam. “Selection of One-Stage Sample Size in Chen-Chen-Chang’s Tilde R Test and an Evaluation of the Performance of Tilde R  ABSTRACT  |  FULL TEXT  Hacettepe Journal of Mathematics and Statistics”. Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 4, 2010, pp. 613-26.
Vancouver Altunkaynak B, Gamgam . Selection of One-Stage Sample Size in Chen-Chen-Chang’s tilde R Test and an Evaluation of the Performance of tilde R  ABSTRACT  |  FULL TEXT  Hacettepe Journal of Mathematics and Statistics. Hacettepe Journal of Mathematics and Statistics. 2010;39(4):613-26.