Research Article
BibTex RIS Cite

Year 2010, Volume: 39 Issue: 2, 191 - 196, 01.02.2010

Abstract

References

  • Dontchev, J. Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci. 19, 303–310, 1996.
  • Dontchev, J. and Noiri, T. Contra-semicontinuous functions, Mathematica Pannonica 10(2), 159-168, 1999.
  • Hatir, E. and Noiri, T. On decomposition of continuity via idealization, Acta Math. Hungar. 96, 341–349, 2002.
  • Hatir, E. and Noiri, T. On semi-I-open sets and semi-I-continuous functions, Acta Math. Hungar. 107 (4), 345–353, 2005.
  • Jankovi´c, D. and Hamlett, T. R. Compatible extensions of ideals, Boll. Un. Mat. Ital. 7 (6-B), 453–465, 1992.
  • Kuratowski, K. Topology,Vol.I (Academic Press, New York, 1966).
  • Levine, N. Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70, 36–41, 1963.
  • Staum, R. The algebra of bounded continuous functions into a non-archimedean field, Pacific J. Math. 50, 169–185, 1974.
  • Vaidyanathaswamy, R. The localization theory in set topology, Proc. Indian Acad. Sci. 20, 51–61, 1954.

Contra Semi-I-Continuous Functions

Year 2010, Volume: 39 Issue: 2, 191 - 196, 01.02.2010

Abstract

In this paper, we apply the notion of semi-I-open sets in ideal topological spaces to present and study a new class of functions called contra semi-I-continuous functions. Relationships between this new class and other classes of functions are established.

References

  • Dontchev, J. Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci. 19, 303–310, 1996.
  • Dontchev, J. and Noiri, T. Contra-semicontinuous functions, Mathematica Pannonica 10(2), 159-168, 1999.
  • Hatir, E. and Noiri, T. On decomposition of continuity via idealization, Acta Math. Hungar. 96, 341–349, 2002.
  • Hatir, E. and Noiri, T. On semi-I-open sets and semi-I-continuous functions, Acta Math. Hungar. 107 (4), 345–353, 2005.
  • Jankovi´c, D. and Hamlett, T. R. Compatible extensions of ideals, Boll. Un. Mat. Ital. 7 (6-B), 453–465, 1992.
  • Kuratowski, K. Topology,Vol.I (Academic Press, New York, 1966).
  • Levine, N. Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70, 36–41, 1963.
  • Staum, R. The algebra of bounded continuous functions into a non-archimedean field, Pacific J. Math. 50, 169–185, 1974.
  • Vaidyanathaswamy, R. The localization theory in set topology, Proc. Indian Acad. Sci. 20, 51–61, 1954.
There are 9 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Research Article
Authors

Jamal M. Mustafa This is me

Publication Date February 1, 2010
Published in Issue Year 2010 Volume: 39 Issue: 2

Cite

APA Mustafa, J. M. (2010). Contra Semi-I-Continuous Functions. Hacettepe Journal of Mathematics and Statistics, 39(2), 191-196.
AMA Mustafa JM. Contra Semi-I-Continuous Functions. Hacettepe Journal of Mathematics and Statistics. February 2010;39(2):191-196.
Chicago Mustafa, Jamal M. “Contra Semi-I-Continuous Functions”. Hacettepe Journal of Mathematics and Statistics 39, no. 2 (February 2010): 191-96.
EndNote Mustafa JM (February 1, 2010) Contra Semi-I-Continuous Functions. Hacettepe Journal of Mathematics and Statistics 39 2 191–196.
IEEE J. M. Mustafa, “Contra Semi-I-Continuous Functions”, Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 2, pp. 191–196, 2010.
ISNAD Mustafa, Jamal M. “Contra Semi-I-Continuous Functions”. Hacettepe Journal of Mathematics and Statistics 39/2 (February2010), 191-196.
JAMA Mustafa JM. Contra Semi-I-Continuous Functions. Hacettepe Journal of Mathematics and Statistics. 2010;39:191–196.
MLA Mustafa, Jamal M. “Contra Semi-I-Continuous Functions”. Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 2, 2010, pp. 191-6.
Vancouver Mustafa JM. Contra Semi-I-Continuous Functions. Hacettepe Journal of Mathematics and Statistics. 2010;39(2):191-6.