Research Article
BibTex RIS Cite
Year 2010, Volume: 39 Issue: 1, 75 - 80, 01.01.2010

Abstract

References

  • Altham, P. M. Quasi-independent triangular contingency tables, Biometrics 31, 233–238, 1975.
  • Bishop, Y. M. M. and Fienberg. S. E. Incomplete two-dimensional contingency tables, Bio- metrics 28, 177–202, 1969.
  • Bishop, Y. M, M., Fienberg, S. E. and Holland. P. W. Discrete Multivariate Analysis (Cam- bridge, MA: MIT Press, 1975).
  • Goodman, L. A. On quasi-independence in triangular contingency tables, Biometrics 35, 651–655, 1979.
  • Goodman, L. A. The analysis of cross-classified data: Independence, quasi-independence and interactions in contingency tables with or without missing entries, J. A. S. A. 63, 1091–1131, 1968.
  • Goodman, L. A. Association models and the bivariate normal distribution in the analysis of cross-classifications having ordered categories, Biometrika 68, 347–355, 1981.
  • Goodman, L. A. The Analysis of cross-classified data having ordered and/or unordered cat- egories: Association models, correlation models,and asymmetry models for contingency ta- bles with or without missing entries, The Annals of Statistics 13 (1), 10–69, 1985.
  • Goodman, L. A. On quasi-independence and quasi-dependence in contingency tables, with special reference to ordinal triangular contingency tables, J. A. S. A. 89, 1059–1063, 1994.
  • Mantel, N. Incomplete contingency tables, Biometrics 26, 291–304, 1970.
  • Sarkar, S. K. Quasi-independence in ordinal triangular contingency tables, J. A. S. A. 84, 592–597, 1989.

Estimation of the Correlation Coefficient for Triangular Contingency Tables under the Bivariate Normal Distribution

Year 2010, Volume: 39 Issue: 1, 75 - 80, 01.01.2010

Abstract

Triangular contingency tables are a special class of incomplete contingency tables. Association and independence models are used to analyze such tables. Association models can be described in terms of the association parameters for the analysis of triangular contingency tables having ordered categories. The aim of this study is to show the relation between the association parameters of the uniform association model and the sample correlation coefficient under the structural zeros. For this purpose, a simulation study based on random contingency
tables containing structural zeros is performed. Association parameters are estimated under the uniform association models. The samplecorrelation coefficients are computed using these parameter estimates and compared with the population correlation coefficients. It is shown that by using the association parameter estimates under the uniform association model, better estimates can be achieved for the population correlation coefficient in the case of structural zeros.

References

  • Altham, P. M. Quasi-independent triangular contingency tables, Biometrics 31, 233–238, 1975.
  • Bishop, Y. M. M. and Fienberg. S. E. Incomplete two-dimensional contingency tables, Bio- metrics 28, 177–202, 1969.
  • Bishop, Y. M, M., Fienberg, S. E. and Holland. P. W. Discrete Multivariate Analysis (Cam- bridge, MA: MIT Press, 1975).
  • Goodman, L. A. On quasi-independence in triangular contingency tables, Biometrics 35, 651–655, 1979.
  • Goodman, L. A. The analysis of cross-classified data: Independence, quasi-independence and interactions in contingency tables with or without missing entries, J. A. S. A. 63, 1091–1131, 1968.
  • Goodman, L. A. Association models and the bivariate normal distribution in the analysis of cross-classifications having ordered categories, Biometrika 68, 347–355, 1981.
  • Goodman, L. A. The Analysis of cross-classified data having ordered and/or unordered cat- egories: Association models, correlation models,and asymmetry models for contingency ta- bles with or without missing entries, The Annals of Statistics 13 (1), 10–69, 1985.
  • Goodman, L. A. On quasi-independence and quasi-dependence in contingency tables, with special reference to ordinal triangular contingency tables, J. A. S. A. 89, 1059–1063, 1994.
  • Mantel, N. Incomplete contingency tables, Biometrics 26, 291–304, 1970.
  • Sarkar, S. K. Quasi-independence in ordinal triangular contingency tables, J. A. S. A. 84, 592–597, 1989.
There are 10 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Mathematics
Authors

Serpil Aktas This is me

Publication Date January 1, 2010
Published in Issue Year 2010 Volume: 39 Issue: 1

Cite

APA Aktas, S. (2010). Estimation of the Correlation Coefficient for Triangular Contingency Tables under the Bivariate Normal Distribution. Hacettepe Journal of Mathematics and Statistics, 39(1), 75-80.
AMA Aktas S. Estimation of the Correlation Coefficient for Triangular Contingency Tables under the Bivariate Normal Distribution. Hacettepe Journal of Mathematics and Statistics. January 2010;39(1):75-80.
Chicago Aktas, Serpil. “Estimation of the Correlation Coefficient for Triangular Contingency Tables under the Bivariate Normal Distribution”. Hacettepe Journal of Mathematics and Statistics 39, no. 1 (January 2010): 75-80.
EndNote Aktas S (January 1, 2010) Estimation of the Correlation Coefficient for Triangular Contingency Tables under the Bivariate Normal Distribution. Hacettepe Journal of Mathematics and Statistics 39 1 75–80.
IEEE S. Aktas, “Estimation of the Correlation Coefficient for Triangular Contingency Tables under the Bivariate Normal Distribution”, Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 1, pp. 75–80, 2010.
ISNAD Aktas, Serpil. “Estimation of the Correlation Coefficient for Triangular Contingency Tables under the Bivariate Normal Distribution”. Hacettepe Journal of Mathematics and Statistics 39/1 (January 2010), 75-80.
JAMA Aktas S. Estimation of the Correlation Coefficient for Triangular Contingency Tables under the Bivariate Normal Distribution. Hacettepe Journal of Mathematics and Statistics. 2010;39:75–80.
MLA Aktas, Serpil. “Estimation of the Correlation Coefficient for Triangular Contingency Tables under the Bivariate Normal Distribution”. Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 1, 2010, pp. 75-80.
Vancouver Aktas S. Estimation of the Correlation Coefficient for Triangular Contingency Tables under the Bivariate Normal Distribution. Hacettepe Journal of Mathematics and Statistics. 2010;39(1):75-80.