Research Article
BibTex RIS Cite
Year 2023, Volume: 52 Issue: 5, 1263 - 1281, 31.10.2023
https://doi.org/10.15672/hujms.1066111

Abstract

References

  • [1] O.O. Aalen, A linear regression model for the analysis of life times, Stat. Med. 8 (8), 907-925, 1989.
  • [2] S. Anjana and P. Sankaran, Parametric analysis of lifetime data with multiple causes of failure using cause-specific reversed hazard rates, Calcutta Stat. Assoc. Bull. 67 (3-4), 129-142, 2015.
  • [3] J. Beyersmann, A. Allignol and M. Schumacher, Competing Risks and Multistate Models with R, Springer Science & Business Media, New York, 2012.
  • [4] D.R. Cox, Regression models and life-tables, J. R. Stat. Soc. Ser. B (Methodol.) 34(2), 187-220, 1972.
  • [5] A. Gelman, Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper), Bayesian Anal. 1 (3) 515-534, 2006.
  • [6] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell. PAMI- 6 (6), 721-741, 1984.
  • [7] W.R. Gilks, R. Sylvia and S. David, Markov Chain Monte Carlo in Practice, CRC press, Boca Raton, 1996
  • [8] C.B. Guure and N.A. Ibrahim, Bayesian analysis of the survival function and failure rate of Weibull distribution with censored data, Math. Probl. Eng. 2012.
  • [9] B. Haller, G. Schmidt and K. Ulm, Applying competing risks regression models: an overview, Lifetime Data Anal. 19 (1), 33-58, 2013.
  • [10] W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57 (1), 97-109, 1970.
  • [11] J.H. Jeong and J. Fine, Direct parametric inference for the cumulative incidence function, J. R. Stat. Soc. Ser. C (Applied Stat.) 55 (2), 187-200, 2006.
  • [12] H. Jiang, M. Xie and L. Tang, Markov chain monte Carlo methods for parameter estimation of the modified Weibull distribution , J. Appl. Stat. 35 (6), 647-658, 2008.
  • [13] J.D. Kalbeisch and R.L. Prentice, The Statistical Analysis of Failure Time Data, volume 360, John Wiley & Sons, New Jersey, 2002.
  • [14] J.P. Klein and M.L. Moeschberger, Survival Analysis: Techniques for Censored and Truncated Data, Springer-Verlag, New York, 2003.
  • [15] C. Lai, M. Xie and D. Murthy, A modified Weibull distribution, IEEE Trans. Reliab. 52 (1), 33-37, 2003.
  • [16] X. Lai, K.K. Yau and L. Liu, Competing risk model with bivariate random eects for clustered survival data, Comput. Stat. Data Anal. 112, 215-223, 2017.
  • [17] J.F. Lawless, Statistical Models and Methods for Lifetime Data, volume 362, John Wiley & Sons, New Jersey, 2003.
  • [18] M. Lee, Parametric inference for quantile event times with adjustment for covariates on competing risks data, J. Appl. Stat. 46 (12), 2128-2144, 2019.
  • [19] W. Li, X. Xue and Y. Long, Long. An additive subdistribution hazard model for competing risks data, Commun. Stat. - Theory Methods 46 (23), 11667-11687, 2017.
  • [20] D. Lin and Z. Ying, Semiparametric analysis of general additive-multiplicative hazard models for counting processes, Ann. Stat. 23 (5), 1712-1734, 1995.
  • [21] D. Lin and Z. Ying, Semiparametric analysis of the additive risk model, Biometrika 81 (1), 61-71, 1994.
  • [22] D. Lunn, C. Jackson, N. Best, D. Spiegelhalter and A. Thomas, The BUGS book: A Practical Introduction to Bayesian Analysis, Chapman and Hall/CRC, Boca Raton, 2012.
  • [23] J.A. Nelder and R. Mead, A simplex method for function minimization, Comput. J. 7 (4), 308-313, 1965.
  • [24] H.K.T. Ng, Parameter estimation for a modified Weibull distribution, for progressively type-II censored samples, IEEE Trans. Reliab. 54 (3), 374-380, 2005.
  • [25] M. Pintilie, Competing Risks: A Practical Perspective, volume 58, John Wiley & Sons, England, 2006.
  • [26] N. Porta Bleda, G. Gómez Melis and M.L. Calle Rosingana, The role of survival functions in competing risks, Technical report, Universitat Politùcnica de Catalunya, 2008.
  • [27] R.L. Prentice, J.D. Kalbeisch, A.V. Peterson Jr, N. Flournoy, V.T. Farewell and N.E. Breslow, The analysis of failure times in the presence of competing risks, Biometrics 34 (4), 541–554, 1978.
  • [28] H. Rehman, N. Chandra, T. Emura and M. Pandey, Estimation of the modified Weibull additive hazards regression model under competing risks, Symmetry, 15 (485), 2023, https://doi.org/10.3390/sym15020485.
  • [29] H. Rehman, N. Chandra, F.S. Hosseini-Baharanchi, A.R. Baghestani and M.A. Pourhoseingholi, Cause-specific hazard regression estimation for modified Weibull distribution under a class of non-informative priors, J. Appl. Stat. 49 (7), 1784– 1801, 2022.
  • [30] C.P. Robert, G. Casella and G. Casella, Introducing Monte Carlo methods with R, volume 18, Springer Science & Business Media, New York, 2010.
  • [31] P. Sankaran and S. Prasad, Additive risks regression model for middle censored exponentiated-exponential lifetime data, Commun. Stat. Simul. Comput. 47 (7), 1963-1974, 2018.
  • [32] Y. Shen and S. Cheng, Confidence bands for cumulative incidence curves under the additive risk model, Biometrics 55(4), 1093-1100, 1999.
  • [33] C. Siddhartha and G. Edward, Understanding the metropolis-hastings algorithm, Stat. Methods Appt. 49 (4), 327-335, 1995.
  • [34] S. Sinha, Bayesian Estimation, New Age International (P) Limited Publisher, New Delhi, 1998.
  • [35] J. Sun, L. Sun and N. Flournoy, Additive hazards model for competing risks analysis of the case-cohort design, Commun. Stat. - Theory Methods 33 (2), 351-366, 2004.
  • [36] T.M. Therneau and P.M. Grambsch, Modeling Survival Data: Extending the Cox Model, Springer Science & Business Media, New York, 2000.
  • [37] S. Upadhyay and A. Gupta, A Bayes analysis of modified Weibull distribution via Markov chain Monte Carlo simulation, J. Stat. Comput. Simul. 80 (3), 241-254, 2010.
  • [38] X. Zhang, H. Akcin and H.J. Lim, Regression analysis of competing risks data via semi-parametric additive hazard model, Stat. Methods Appt. 20 (3), 357-381, 2011.

Analysis and modelling of competing risks survival data using modified Weibull additive hazards regression approach

Year 2023, Volume: 52 Issue: 5, 1263 - 1281, 31.10.2023
https://doi.org/10.15672/hujms.1066111

Abstract

The cause-specific hazard function plays an important role in developing the regression models for competing risks survival data. Proportional hazards and additive hazards are the commonly used regression approaches in survival analysis. Mostly, in literature, the proportional hazards model was used for parametric regression modelling of survival data. In this article, we introduce a parametric additive hazards regression model for survival analysis with competing risks. For employing a parametric model we consider the modified Weibull distribution as a baseline model which is capable to model survival data with non-monotonic behaviour of hazard rate. The estimation process is carried out via maximum likelihood and Bayesian approaches. In addition to Bayesian methods, a class of non-informative types of prior is introduced with squared error (symmetric) and linear-exponential (asymmetric) loss functions. The relative performance of the different estimators is assessed using Monte Carlo simulation. Finally, using the proposed methodology, a real data analysis is performed.

References

  • [1] O.O. Aalen, A linear regression model for the analysis of life times, Stat. Med. 8 (8), 907-925, 1989.
  • [2] S. Anjana and P. Sankaran, Parametric analysis of lifetime data with multiple causes of failure using cause-specific reversed hazard rates, Calcutta Stat. Assoc. Bull. 67 (3-4), 129-142, 2015.
  • [3] J. Beyersmann, A. Allignol and M. Schumacher, Competing Risks and Multistate Models with R, Springer Science & Business Media, New York, 2012.
  • [4] D.R. Cox, Regression models and life-tables, J. R. Stat. Soc. Ser. B (Methodol.) 34(2), 187-220, 1972.
  • [5] A. Gelman, Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper), Bayesian Anal. 1 (3) 515-534, 2006.
  • [6] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell. PAMI- 6 (6), 721-741, 1984.
  • [7] W.R. Gilks, R. Sylvia and S. David, Markov Chain Monte Carlo in Practice, CRC press, Boca Raton, 1996
  • [8] C.B. Guure and N.A. Ibrahim, Bayesian analysis of the survival function and failure rate of Weibull distribution with censored data, Math. Probl. Eng. 2012.
  • [9] B. Haller, G. Schmidt and K. Ulm, Applying competing risks regression models: an overview, Lifetime Data Anal. 19 (1), 33-58, 2013.
  • [10] W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57 (1), 97-109, 1970.
  • [11] J.H. Jeong and J. Fine, Direct parametric inference for the cumulative incidence function, J. R. Stat. Soc. Ser. C (Applied Stat.) 55 (2), 187-200, 2006.
  • [12] H. Jiang, M. Xie and L. Tang, Markov chain monte Carlo methods for parameter estimation of the modified Weibull distribution , J. Appl. Stat. 35 (6), 647-658, 2008.
  • [13] J.D. Kalbeisch and R.L. Prentice, The Statistical Analysis of Failure Time Data, volume 360, John Wiley & Sons, New Jersey, 2002.
  • [14] J.P. Klein and M.L. Moeschberger, Survival Analysis: Techniques for Censored and Truncated Data, Springer-Verlag, New York, 2003.
  • [15] C. Lai, M. Xie and D. Murthy, A modified Weibull distribution, IEEE Trans. Reliab. 52 (1), 33-37, 2003.
  • [16] X. Lai, K.K. Yau and L. Liu, Competing risk model with bivariate random eects for clustered survival data, Comput. Stat. Data Anal. 112, 215-223, 2017.
  • [17] J.F. Lawless, Statistical Models and Methods for Lifetime Data, volume 362, John Wiley & Sons, New Jersey, 2003.
  • [18] M. Lee, Parametric inference for quantile event times with adjustment for covariates on competing risks data, J. Appl. Stat. 46 (12), 2128-2144, 2019.
  • [19] W. Li, X. Xue and Y. Long, Long. An additive subdistribution hazard model for competing risks data, Commun. Stat. - Theory Methods 46 (23), 11667-11687, 2017.
  • [20] D. Lin and Z. Ying, Semiparametric analysis of general additive-multiplicative hazard models for counting processes, Ann. Stat. 23 (5), 1712-1734, 1995.
  • [21] D. Lin and Z. Ying, Semiparametric analysis of the additive risk model, Biometrika 81 (1), 61-71, 1994.
  • [22] D. Lunn, C. Jackson, N. Best, D. Spiegelhalter and A. Thomas, The BUGS book: A Practical Introduction to Bayesian Analysis, Chapman and Hall/CRC, Boca Raton, 2012.
  • [23] J.A. Nelder and R. Mead, A simplex method for function minimization, Comput. J. 7 (4), 308-313, 1965.
  • [24] H.K.T. Ng, Parameter estimation for a modified Weibull distribution, for progressively type-II censored samples, IEEE Trans. Reliab. 54 (3), 374-380, 2005.
  • [25] M. Pintilie, Competing Risks: A Practical Perspective, volume 58, John Wiley & Sons, England, 2006.
  • [26] N. Porta Bleda, G. Gómez Melis and M.L. Calle Rosingana, The role of survival functions in competing risks, Technical report, Universitat Politùcnica de Catalunya, 2008.
  • [27] R.L. Prentice, J.D. Kalbeisch, A.V. Peterson Jr, N. Flournoy, V.T. Farewell and N.E. Breslow, The analysis of failure times in the presence of competing risks, Biometrics 34 (4), 541–554, 1978.
  • [28] H. Rehman, N. Chandra, T. Emura and M. Pandey, Estimation of the modified Weibull additive hazards regression model under competing risks, Symmetry, 15 (485), 2023, https://doi.org/10.3390/sym15020485.
  • [29] H. Rehman, N. Chandra, F.S. Hosseini-Baharanchi, A.R. Baghestani and M.A. Pourhoseingholi, Cause-specific hazard regression estimation for modified Weibull distribution under a class of non-informative priors, J. Appl. Stat. 49 (7), 1784– 1801, 2022.
  • [30] C.P. Robert, G. Casella and G. Casella, Introducing Monte Carlo methods with R, volume 18, Springer Science & Business Media, New York, 2010.
  • [31] P. Sankaran and S. Prasad, Additive risks regression model for middle censored exponentiated-exponential lifetime data, Commun. Stat. Simul. Comput. 47 (7), 1963-1974, 2018.
  • [32] Y. Shen and S. Cheng, Confidence bands for cumulative incidence curves under the additive risk model, Biometrics 55(4), 1093-1100, 1999.
  • [33] C. Siddhartha and G. Edward, Understanding the metropolis-hastings algorithm, Stat. Methods Appt. 49 (4), 327-335, 1995.
  • [34] S. Sinha, Bayesian Estimation, New Age International (P) Limited Publisher, New Delhi, 1998.
  • [35] J. Sun, L. Sun and N. Flournoy, Additive hazards model for competing risks analysis of the case-cohort design, Commun. Stat. - Theory Methods 33 (2), 351-366, 2004.
  • [36] T.M. Therneau and P.M. Grambsch, Modeling Survival Data: Extending the Cox Model, Springer Science & Business Media, New York, 2000.
  • [37] S. Upadhyay and A. Gupta, A Bayes analysis of modified Weibull distribution via Markov chain Monte Carlo simulation, J. Stat. Comput. Simul. 80 (3), 241-254, 2010.
  • [38] X. Zhang, H. Akcin and H.J. Lim, Regression analysis of competing risks data via semi-parametric additive hazard model, Stat. Methods Appt. 20 (3), 357-381, 2011.
There are 38 citations in total.

Details

Primary Language English
Subjects Statistics
Journal Section Statistics
Authors

Habbiburr Rehman This is me 0000-0003-1762-3573

N. Chandra 0000-0002-1213-7739

Ali Abuzaid 0000-0002-6680-7371

Early Pub Date May 13, 2023
Publication Date October 31, 2023
Published in Issue Year 2023 Volume: 52 Issue: 5

Cite

APA Rehman, H., Chandra, N., & Abuzaid, A. (2023). Analysis and modelling of competing risks survival data using modified Weibull additive hazards regression approach. Hacettepe Journal of Mathematics and Statistics, 52(5), 1263-1281. https://doi.org/10.15672/hujms.1066111
AMA Rehman H, Chandra N, Abuzaid A. Analysis and modelling of competing risks survival data using modified Weibull additive hazards regression approach. Hacettepe Journal of Mathematics and Statistics. October 2023;52(5):1263-1281. doi:10.15672/hujms.1066111
Chicago Rehman, Habbiburr, N. Chandra, and Ali Abuzaid. “Analysis and Modelling of Competing Risks Survival Data Using Modified Weibull Additive Hazards Regression Approach”. Hacettepe Journal of Mathematics and Statistics 52, no. 5 (October 2023): 1263-81. https://doi.org/10.15672/hujms.1066111.
EndNote Rehman H, Chandra N, Abuzaid A (October 1, 2023) Analysis and modelling of competing risks survival data using modified Weibull additive hazards regression approach. Hacettepe Journal of Mathematics and Statistics 52 5 1263–1281.
IEEE H. Rehman, N. Chandra, and A. Abuzaid, “Analysis and modelling of competing risks survival data using modified Weibull additive hazards regression approach”, Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 5, pp. 1263–1281, 2023, doi: 10.15672/hujms.1066111.
ISNAD Rehman, Habbiburr et al. “Analysis and Modelling of Competing Risks Survival Data Using Modified Weibull Additive Hazards Regression Approach”. Hacettepe Journal of Mathematics and Statistics 52/5 (October 2023), 1263-1281. https://doi.org/10.15672/hujms.1066111.
JAMA Rehman H, Chandra N, Abuzaid A. Analysis and modelling of competing risks survival data using modified Weibull additive hazards regression approach. Hacettepe Journal of Mathematics and Statistics. 2023;52:1263–1281.
MLA Rehman, Habbiburr et al. “Analysis and Modelling of Competing Risks Survival Data Using Modified Weibull Additive Hazards Regression Approach”. Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 5, 2023, pp. 1263-81, doi:10.15672/hujms.1066111.
Vancouver Rehman H, Chandra N, Abuzaid A. Analysis and modelling of competing risks survival data using modified Weibull additive hazards regression approach. Hacettepe Journal of Mathematics and Statistics. 2023;52(5):1263-81.