Parametric and semiparametric approaches for copula-based regression estimation
Year 2024,
Volume: 53 Issue: 4, 1141 - 1157, 27.08.2024
Alam Ali
,
Ashok Pathak
,
Mohd Arshad
Abstract
Based on the normality assumption on dependent variable, regression analysis is one of the most popular statistical techniques for studying the dependence between response and explanatory variables. However, violation of this assumption in the data makes regression analysis inappropriate in several real life situations. Copula is a powerful tool for modeling multivariate data and have recently been employed in regression analysis. The key concept behind copula-based regression approach is to formulate conditional expectation in terms of copula density and marginal distributions. In this paper, we explore parametric and semiparametric estimations of the copula-based regression function. The maximum likelihood (ML), inference functions for margins (IFM), and pseudo maximum likelihood (PML) techniques are adopted here for estimation purposes. Extensive numerical experiments are performed to illustrate the performance of the proposed copula-based regression estimators under specified and misspecified scenarios of copulas and marginals. Finally, two real data applications are also presented to demonstrate the performance of the considered estimators.
Ethical Statement
No potential conflict of interest was reported by thrauthor(s)
Supporting Institution
Department of Science and Technology (DST), Government of India
References
- [1] E.F. Acar, P. Azimaee and M.E. Hoque, Predictive assessment of copula models, Can.
J. Stat. 47 (1), 8-26, 2019.
- [2] A. Ahdika, D. Rosadi and A.R. Effendie, Conditional expectation formula of copulas
for higher dimensions and its application, J. Math. Comput. Sci. 11 (4), 4877-4904,
2021.
- [3] D. Berg, Copula goodness-of-fit testing: An overview and power comparison, Eur. J.
Finance 15 (7-8), 675-701, 2009.
- [4] T. Bouezmarni, F. Funke and F. Camirand Lemyre, Regression estimation based on
Bernstein density copulas, Université de Sherbrooke, Submitted, 2014.
- [5] B. Choroś, R. Ibragimov and E. Permiakova, Copula Estimation, Copula Theory and
Its Applications, Springer, 2010.
- [6] G.J. Crane and J. van der Hoek, Conditional expectation formulae for copulas, Aust.
N. Z. J. Stat. 50 (1), 53-67, 2008.
- [7] A.R. de Leon and B.Wu, Copula-based regression models for a bivariate mixed discrete
and continuous outcome, Stat. Med. 30 (2), 175-185, 2011.
- [8] J.B. de Long and L.H. Summers, Equipment investment and economic growth, Q. J.
Econ. 106 (2), 445-502, 1991.
- [9] H. Dette, R. Van Hecke and S. Volgushev, Some comments on copula-based regression,
J. Am. Stat. Assoc. 109 (507), 1319-1324, 2014.
- [10] ¨ O.K. Erdemir and M. Sucu, A modified pseudo-copula regression model for risk groups
with various dependency levels, J. Stat. Comput. Simul. 92 (5), 1092-1112, 2022.
- [11] C. Genest, K. Ghoudi and L.P. Rivest, A semiparametric estimation procedure of
dependence parameters in multivariate families of distributions, Biometrika 82 (3),
543-552, 1995.
- [12] C. Genest, W. Huang and J.M. Dufour, A regularized goodness-of-fit test for copulas,
J. SFdS 154 (1), 64-77, 2013.
- [13] C. Genest, B. Rémillard and D. Beaudoin, Goodness-of-fit tests for copulas: A review
and a power study, Insur. Math. Econ. 44 (2), 199-213, 2009.
- [14] S. Hamori, K. Motegi and Z. Zhang, Copula-based regression models with data missing
at random, J. Multivariate Anal. 180, 1-23, 2020.
- [15] M.S. Hofert, I. Kojadinovic, M. Maechler and J. Yan, Package "copula: Multivariate
Dependence with Copulas", R package version: 1.1-3, 2023.
- [16] J.P. Jaworski, F. Durante, W.K. Hardle and T. Rychlik, Copula Theory and Its
Applications, 198, Springer, 2010.
- [17] H. Joe, Dependence Modeling with Copulas, CRC Press, 2014.
- [18] D. Kim and J.M. Kim, Analysis of directional dependence using asymmetric copulabased
regression models, J. Stat. Comput. Simul. 84 (9), 1990-2010, 2014.
- [19] G. Kim, M.J. Silvapulle and P. Silvapulle, Comparison of semiparametric and parametric
methods for estimating copulas, Comput. Stat. Data. Anal. 51 (6), 2836-2850,
2007.
- [20] I. Kojadinovic, J. Yan and M. Holmes, Fast large-sample goodness-of-fit tests for
copulas, Statist. Sinica 21 (2), 841-871, 2011.
- [21] N. Kolev and D. Paiva, Copula-based regression models: A survey, J. Statist. Plann.
Inference 139 (11), 3847-3856, 2009.
- [22] Y.K. Leong and E.A. Valdez, Claims prediction with dependence using copula models,
Insurance: Mathematics and Economics, 2005.
- [23] J.A. Nelder and R.W. Wedderburn, Generalized linear models, J. Roy. Statist. Soc.
Ser. A 135 (3), 370-384, 1972.
- [24] R.B. Nelsen, An Introduction to Copulas, 2nd ed., Springer, New York, 2007.
- [25] H. Noh, A. El Ghouch and T. Bouezmarni, Copula-based regression estimation and
inference, J. Amer. Statist. Assoc. 108 (502), 676-688, 2013.
- [26] R.A. Parsa and S.A. Klugman, Copula regression, Variance 5, 45-54, 2011.
- [27] K.W. Penrose, A. Nelson and A. Fisher, Generalized body composition prediction
equation for men using simple measurement techniques, Med. Sci. Sports Exerc. 17
(2), 189, 1985.
- [28] M. Pitt, D. Chan and R. Kohn, Efficient Bayesian inference for Gaussian copula
regression models, Biometrika 93 (3), 537-554, 2006.
- [29] A. Sheikhi, F. Arad and R. Mesiar, A heteroscedasticity diagnostic of a regression
analysis with copula dependent random variables, Braz. J. Probab. Stat. 36 (2), 408-
419, 2022.
- [30] M. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist.
Univ. Paris 8 (3), 229-231, 1959.
- [31] M.S. Smith and N. Klein, Bayesian inference for regression copulas, J. Bus. Econom.
Statist. 39 (3), 712-728, 2021.
- [32] E.A. Sungur, Some observations on copula regression functions, Comm. Statist. Theory
Methods 34 (9-10), 1967-1978, 2005.
- [33] H. Tsukahara, Semiparametric estimation in copula models, Canad. J. Statist. 33 (3),
357-375, 2005.
- [34] P. Vellaisamy and A.K. Pathak, Copulas and regression models, J. Indian Statist.
Assoc. 52 (1), 113-134, 2014.
Year 2024,
Volume: 53 Issue: 4, 1141 - 1157, 27.08.2024
Alam Ali
,
Ashok Pathak
,
Mohd Arshad
References
- [1] E.F. Acar, P. Azimaee and M.E. Hoque, Predictive assessment of copula models, Can.
J. Stat. 47 (1), 8-26, 2019.
- [2] A. Ahdika, D. Rosadi and A.R. Effendie, Conditional expectation formula of copulas
for higher dimensions and its application, J. Math. Comput. Sci. 11 (4), 4877-4904,
2021.
- [3] D. Berg, Copula goodness-of-fit testing: An overview and power comparison, Eur. J.
Finance 15 (7-8), 675-701, 2009.
- [4] T. Bouezmarni, F. Funke and F. Camirand Lemyre, Regression estimation based on
Bernstein density copulas, Université de Sherbrooke, Submitted, 2014.
- [5] B. Choroś, R. Ibragimov and E. Permiakova, Copula Estimation, Copula Theory and
Its Applications, Springer, 2010.
- [6] G.J. Crane and J. van der Hoek, Conditional expectation formulae for copulas, Aust.
N. Z. J. Stat. 50 (1), 53-67, 2008.
- [7] A.R. de Leon and B.Wu, Copula-based regression models for a bivariate mixed discrete
and continuous outcome, Stat. Med. 30 (2), 175-185, 2011.
- [8] J.B. de Long and L.H. Summers, Equipment investment and economic growth, Q. J.
Econ. 106 (2), 445-502, 1991.
- [9] H. Dette, R. Van Hecke and S. Volgushev, Some comments on copula-based regression,
J. Am. Stat. Assoc. 109 (507), 1319-1324, 2014.
- [10] ¨ O.K. Erdemir and M. Sucu, A modified pseudo-copula regression model for risk groups
with various dependency levels, J. Stat. Comput. Simul. 92 (5), 1092-1112, 2022.
- [11] C. Genest, K. Ghoudi and L.P. Rivest, A semiparametric estimation procedure of
dependence parameters in multivariate families of distributions, Biometrika 82 (3),
543-552, 1995.
- [12] C. Genest, W. Huang and J.M. Dufour, A regularized goodness-of-fit test for copulas,
J. SFdS 154 (1), 64-77, 2013.
- [13] C. Genest, B. Rémillard and D. Beaudoin, Goodness-of-fit tests for copulas: A review
and a power study, Insur. Math. Econ. 44 (2), 199-213, 2009.
- [14] S. Hamori, K. Motegi and Z. Zhang, Copula-based regression models with data missing
at random, J. Multivariate Anal. 180, 1-23, 2020.
- [15] M.S. Hofert, I. Kojadinovic, M. Maechler and J. Yan, Package "copula: Multivariate
Dependence with Copulas", R package version: 1.1-3, 2023.
- [16] J.P. Jaworski, F. Durante, W.K. Hardle and T. Rychlik, Copula Theory and Its
Applications, 198, Springer, 2010.
- [17] H. Joe, Dependence Modeling with Copulas, CRC Press, 2014.
- [18] D. Kim and J.M. Kim, Analysis of directional dependence using asymmetric copulabased
regression models, J. Stat. Comput. Simul. 84 (9), 1990-2010, 2014.
- [19] G. Kim, M.J. Silvapulle and P. Silvapulle, Comparison of semiparametric and parametric
methods for estimating copulas, Comput. Stat. Data. Anal. 51 (6), 2836-2850,
2007.
- [20] I. Kojadinovic, J. Yan and M. Holmes, Fast large-sample goodness-of-fit tests for
copulas, Statist. Sinica 21 (2), 841-871, 2011.
- [21] N. Kolev and D. Paiva, Copula-based regression models: A survey, J. Statist. Plann.
Inference 139 (11), 3847-3856, 2009.
- [22] Y.K. Leong and E.A. Valdez, Claims prediction with dependence using copula models,
Insurance: Mathematics and Economics, 2005.
- [23] J.A. Nelder and R.W. Wedderburn, Generalized linear models, J. Roy. Statist. Soc.
Ser. A 135 (3), 370-384, 1972.
- [24] R.B. Nelsen, An Introduction to Copulas, 2nd ed., Springer, New York, 2007.
- [25] H. Noh, A. El Ghouch and T. Bouezmarni, Copula-based regression estimation and
inference, J. Amer. Statist. Assoc. 108 (502), 676-688, 2013.
- [26] R.A. Parsa and S.A. Klugman, Copula regression, Variance 5, 45-54, 2011.
- [27] K.W. Penrose, A. Nelson and A. Fisher, Generalized body composition prediction
equation for men using simple measurement techniques, Med. Sci. Sports Exerc. 17
(2), 189, 1985.
- [28] M. Pitt, D. Chan and R. Kohn, Efficient Bayesian inference for Gaussian copula
regression models, Biometrika 93 (3), 537-554, 2006.
- [29] A. Sheikhi, F. Arad and R. Mesiar, A heteroscedasticity diagnostic of a regression
analysis with copula dependent random variables, Braz. J. Probab. Stat. 36 (2), 408-
419, 2022.
- [30] M. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist.
Univ. Paris 8 (3), 229-231, 1959.
- [31] M.S. Smith and N. Klein, Bayesian inference for regression copulas, J. Bus. Econom.
Statist. 39 (3), 712-728, 2021.
- [32] E.A. Sungur, Some observations on copula regression functions, Comm. Statist. Theory
Methods 34 (9-10), 1967-1978, 2005.
- [33] H. Tsukahara, Semiparametric estimation in copula models, Canad. J. Statist. 33 (3),
357-375, 2005.
- [34] P. Vellaisamy and A.K. Pathak, Copulas and regression models, J. Indian Statist.
Assoc. 52 (1), 113-134, 2014.