Research Article
BibTex RIS Cite

Exploring a new two-parameter Archimedean copula: the Gumbel-Joe copula

Year 2024, Volume: 53 Issue: 6, 1742 - 1758, 28.12.2024
https://doi.org/10.15672/hujms.1444175

Abstract

In this article, we present a novel Archimedean copula constructed from a unique strict generator function. It can be described as a two-parameter unification of the well-established Gumbel-Barnett and Joe copulas. The first part is devoted to its formulation, as well as those of the corresponding density, the conditional copula, and the Kendall distribution function. Graphs are also included to illustrate their shape behavior under different parameter configurations. In a second part, we examine some of its notable properties, with emphasis on the correlation properties. Practical applications are discussed in the final part. In particular, we use the maximum likelihood estimation method to determine the unknown parameters involved from the data and perform a simulation study to demonstrate the effectiveness of this approach. We also analyze a dataset to provide practical illustrations of copula behavior and potential.

Supporting Institution

King Saud University

Project Number

RSPD2024R1011

Thanks

This research was funded by Researchers Supporting Project number (RSPD2024R1011), King Saud University, Riyadh, Saudi Arabia.

References

  • [1] W. Alhadlaq and A. Alzaid, Distribution function, probability generating function and archimedean generator, Symmetry 12 (12), 2108, 2020.
  • [2] F. A. Alqallaf and D. Kundu, A bivariate inverse generalized exponential distribution and its applications in dependent competing risks model, Communications in Statistics-Simulation and Computation 51 (12), 7019–7036, 2022.
  • [3] C. Amblard and S. Girard, A new extension of bivariate FGM copulas, Metrika 70 (1), 1–17, 2009.
  • [4] K. P. Burnham and D. R. Anderson, Multimodel inference: understanding AIC and BIC in model selection, Sociol. Methods Res. 33 (2), 261–304, 2004.
  • [5] C. Chesneau, On a weighted version of the Gumbel-Barnett copula, Innovative Journal of Mathematics (IJM) 1 (2), 1–13, 2022.
  • [6] C. Chesneau, Extensions of Two Bivariate Strict Archimedean Copulas, Computational Journal of Mathematical and Statistical Sciences 2 (2), 159–180, 2023.
  • [7] C. Chesneau, Parametric extensions of some referenced two-dimensional strict Archimedean copulas, Research and Communications in Mathematics and Mathematical Sciences 15 (1), 49–87, 2023.
  • [8] E. A. Coelho-Barros, J. A. Achcar, J. Mazucheli, et al., Bivariate Weibull distributions derived from copula functions in the presence of cure fraction and censored data, J. Data Sci. 14 (2), 2016.
  • [9] W. Diaz and C. M. Cuadras, An extension of the GumbelBarnett family of copulas, Metrika 85, 913–926, 2022.
  • [10] M. Franco, J.-M. Vivo, and D. Kundu, A generator of bivariate distributions: Properties, estimation, and applications, Mathematics 8 (10), 1776, 2020.
  • [11] C. Genest and R. J. MacKay, Copules Archimédiennes et families de lois bidimensionnelles dont les marges sont données, Can. J. Stat. 14 (2), 145–159, 1986.
  • [12] D. Ghosh, On the Plackett Distribution with Bivariate Censored Data, Int. J. Biostat. 4 (1), 2008.
  • [13] E. J. Gumbel, Distributions des valeurs extremes en plusiers dimensions, Publ. Inst. Statist. Univ. Paris 9, 171–173, 1960.
  • [14] W. J. Huster, R. Brookmeyer, and S. G. Self, Modelling paired survival data with covariates, Biometrics pages 145–156, 1989.
  • [15] T. P. Hutchinson and C. D. Lai. Continuous bivariate distributions emphasising applications. Technical report, 1990.
  • [16] H. Joe, Parametric families of multivariate distributions with given margins, J. Multivar. Anal. 46 (2), 262–282, 1993.
  • [17] H. Joe, Multivariate models and multivariate dependence concepts, CRC press, 1997.
  • [18] H. Joe, Dependence modeling with copulas, CRC press, 2014.
  • [19] M. Jones, A. Noufaily, and K. Burke, A bivariate power generalized Weibull distribution: a flexible parametric model for survival analysis, Stat. Methods Med. Res. 29 (8), 2295–2306, 2020.
  • [20] A. W. Marshall and I. Olkin, A generalized bivariate exponential distribution, J. Appl. Probab. 4 (2), 291–302, 1967.
  • [21] A. W. Marshall and I. Olkin, Families of multivariate distributions, J. Am. Stat. Assoc. 83 (403), 834–841, 1988.
  • [22] R. B. Nelsen, An introduction to copulas, Springer Science & Business Media, 2007.
  • [23] R. L. Plackett, A class of bivariate distributions, J. Am. Stat. Assoc. 60 (310), 516–522, 1965.
Year 2024, Volume: 53 Issue: 6, 1742 - 1758, 28.12.2024
https://doi.org/10.15672/hujms.1444175

Abstract

Project Number

RSPD2024R1011

References

  • [1] W. Alhadlaq and A. Alzaid, Distribution function, probability generating function and archimedean generator, Symmetry 12 (12), 2108, 2020.
  • [2] F. A. Alqallaf and D. Kundu, A bivariate inverse generalized exponential distribution and its applications in dependent competing risks model, Communications in Statistics-Simulation and Computation 51 (12), 7019–7036, 2022.
  • [3] C. Amblard and S. Girard, A new extension of bivariate FGM copulas, Metrika 70 (1), 1–17, 2009.
  • [4] K. P. Burnham and D. R. Anderson, Multimodel inference: understanding AIC and BIC in model selection, Sociol. Methods Res. 33 (2), 261–304, 2004.
  • [5] C. Chesneau, On a weighted version of the Gumbel-Barnett copula, Innovative Journal of Mathematics (IJM) 1 (2), 1–13, 2022.
  • [6] C. Chesneau, Extensions of Two Bivariate Strict Archimedean Copulas, Computational Journal of Mathematical and Statistical Sciences 2 (2), 159–180, 2023.
  • [7] C. Chesneau, Parametric extensions of some referenced two-dimensional strict Archimedean copulas, Research and Communications in Mathematics and Mathematical Sciences 15 (1), 49–87, 2023.
  • [8] E. A. Coelho-Barros, J. A. Achcar, J. Mazucheli, et al., Bivariate Weibull distributions derived from copula functions in the presence of cure fraction and censored data, J. Data Sci. 14 (2), 2016.
  • [9] W. Diaz and C. M. Cuadras, An extension of the GumbelBarnett family of copulas, Metrika 85, 913–926, 2022.
  • [10] M. Franco, J.-M. Vivo, and D. Kundu, A generator of bivariate distributions: Properties, estimation, and applications, Mathematics 8 (10), 1776, 2020.
  • [11] C. Genest and R. J. MacKay, Copules Archimédiennes et families de lois bidimensionnelles dont les marges sont données, Can. J. Stat. 14 (2), 145–159, 1986.
  • [12] D. Ghosh, On the Plackett Distribution with Bivariate Censored Data, Int. J. Biostat. 4 (1), 2008.
  • [13] E. J. Gumbel, Distributions des valeurs extremes en plusiers dimensions, Publ. Inst. Statist. Univ. Paris 9, 171–173, 1960.
  • [14] W. J. Huster, R. Brookmeyer, and S. G. Self, Modelling paired survival data with covariates, Biometrics pages 145–156, 1989.
  • [15] T. P. Hutchinson and C. D. Lai. Continuous bivariate distributions emphasising applications. Technical report, 1990.
  • [16] H. Joe, Parametric families of multivariate distributions with given margins, J. Multivar. Anal. 46 (2), 262–282, 1993.
  • [17] H. Joe, Multivariate models and multivariate dependence concepts, CRC press, 1997.
  • [18] H. Joe, Dependence modeling with copulas, CRC press, 2014.
  • [19] M. Jones, A. Noufaily, and K. Burke, A bivariate power generalized Weibull distribution: a flexible parametric model for survival analysis, Stat. Methods Med. Res. 29 (8), 2295–2306, 2020.
  • [20] A. W. Marshall and I. Olkin, A generalized bivariate exponential distribution, J. Appl. Probab. 4 (2), 291–302, 1967.
  • [21] A. W. Marshall and I. Olkin, Families of multivariate distributions, J. Am. Stat. Assoc. 83 (403), 834–841, 1988.
  • [22] R. B. Nelsen, An introduction to copulas, Springer Science & Business Media, 2007.
  • [23] R. L. Plackett, A class of bivariate distributions, J. Am. Stat. Assoc. 60 (310), 516–522, 1965.
There are 23 citations in total.

Details

Primary Language English
Subjects Stochastic Analysis and Modelling
Journal Section Statistics
Authors

Christophe Chesneau 0000-0002-1522-9292

Weaam Alhadlaq 0000-0002-2745-098X

Project Number RSPD2024R1011
Early Pub Date November 13, 2024
Publication Date December 28, 2024
Submission Date February 28, 2024
Acceptance Date September 25, 2024
Published in Issue Year 2024 Volume: 53 Issue: 6

Cite

APA Chesneau, C., & Alhadlaq, W. (2024). Exploring a new two-parameter Archimedean copula: the Gumbel-Joe copula. Hacettepe Journal of Mathematics and Statistics, 53(6), 1742-1758. https://doi.org/10.15672/hujms.1444175
AMA Chesneau C, Alhadlaq W. Exploring a new two-parameter Archimedean copula: the Gumbel-Joe copula. Hacettepe Journal of Mathematics and Statistics. December 2024;53(6):1742-1758. doi:10.15672/hujms.1444175
Chicago Chesneau, Christophe, and Weaam Alhadlaq. “Exploring a New Two-Parameter Archimedean Copula: The Gumbel-Joe Copula”. Hacettepe Journal of Mathematics and Statistics 53, no. 6 (December 2024): 1742-58. https://doi.org/10.15672/hujms.1444175.
EndNote Chesneau C, Alhadlaq W (December 1, 2024) Exploring a new two-parameter Archimedean copula: the Gumbel-Joe copula. Hacettepe Journal of Mathematics and Statistics 53 6 1742–1758.
IEEE C. Chesneau and W. Alhadlaq, “Exploring a new two-parameter Archimedean copula: the Gumbel-Joe copula”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, pp. 1742–1758, 2024, doi: 10.15672/hujms.1444175.
ISNAD Chesneau, Christophe - Alhadlaq, Weaam. “Exploring a New Two-Parameter Archimedean Copula: The Gumbel-Joe Copula”. Hacettepe Journal of Mathematics and Statistics 53/6 (December 2024), 1742-1758. https://doi.org/10.15672/hujms.1444175.
JAMA Chesneau C, Alhadlaq W. Exploring a new two-parameter Archimedean copula: the Gumbel-Joe copula. Hacettepe Journal of Mathematics and Statistics. 2024;53:1742–1758.
MLA Chesneau, Christophe and Weaam Alhadlaq. “Exploring a New Two-Parameter Archimedean Copula: The Gumbel-Joe Copula”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, 2024, pp. 1742-58, doi:10.15672/hujms.1444175.
Vancouver Chesneau C, Alhadlaq W. Exploring a new two-parameter Archimedean copula: the Gumbel-Joe copula. Hacettepe Journal of Mathematics and Statistics. 2024;53(6):1742-58.