Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 2, 599 - 617, 28.04.2025
https://doi.org/10.15672/hujms.1569080

Abstract

Project Number

EXC-2046/1 and RSPD2025R1075

References

  • [1] M. Aneta and F. Darya, On the simulation of sub-fractional Brownian motion, 20th International Conference on Methods and Models in Automation and Robotics (MMAR), 400-405, 2015.
  • [2] T. Bojdecki, L. Gorostiza and A. Talarczyk, Sub-fractional Brownian motion and its relation to occupation times, Stat. Probab. Lett. 69 (4), 405-419, 2004.
  • [3] T.T. Dufera, Fractional Brownian motion in option pricing and dynamic delta hedging: Experimental simulations, N. Am. J. Econ. Finance. 69, Part B, 2024.
  • [4] M.D.N. da Costa, A.A. Brito, N.P.A. Castro, S.T.M.R. Dias and F.G. Zebende, Trends in the Air Temperature: A Practical Approach for Auto-and Cross-Correlation Analysis, Adv. Meteorol. 2024 (1), 2024.
  • [5] D. Feyel and A. De La Pradelle, On fractional Brownian processes, Potential Anal. 10, 273-288, 1999.
  • [6] W. Hu, Q. Yang, L. Peng, L. Liu, P. Zhang, S. Li and J. Wu, Non-stationary modeling and simulation of strong winds, Heliyon 10 (15), 2024.
  • [7] Y. Jicheng, F. Yuqiang and W. Xianjia, Lie symmetry, exact solutions and conservation laws of bi-fractional BlackScholes equation derived by the fractional G-Brownian motion, Int. J. Financ. Eng. 11 (1), 2024.
  • [8] A. E. Kyojo, E. S. Osima, S. S. Mirau and G. V. Masanja, Applying Stationary and Nonstationary Generalized Extreme Value Distributions in Modeling Annual Extreme Temperature Patterns, Adv. Meteorol. 2024 (1), 2024.
  • [9] D. Laurent, M. Hu and S. Peng, Function spaces and capacity related to a sublinear expectation: Application to G-Brownian motion paths, Potential Anal. 34, 139-161, 2011.
  • [10] R. Monjo and O. Meseguer-Ruiz, Review: Fractal Geometry in Precipitation, Atmosphere 15 (1), 2024.
  • [11] S. Peng, Stochastic Analysis and Applications: The Abel Symposium 2005, Springer Berlin, Heidelberg, 2007.
  • [12] S. Peng, G-Brownian motion and dynamic risk measure under volatility uncertainty, arXiv:0711.2834 [math.PR].
  • [13] S. Peng, Nonlinear expectations and stochastic calculus under uncertainty: with robust CLT and G-Brownian motion, Springer Nature, 2019.
  • [14] F. Shokrollahi, D. Ahmadian and L.V. Ballestra, Pricing Asian options under the mixed fractional Brownian motion with jumps, Math. Comput. Simul. 226, 172-183, 2024.
  • [15] C. Tudor, Some properties of the sub-fractional Brownian motion, Stochastics 79 (5), 431-448, 2007.
  • [16] A.C. Tudor, Analysis of variations for self-similar processes: a stochastic calculus approach, Springer Science & Business Media, 2013.
  • [17] C. Wei, G-white noise theory, wavelet decomposition for fractional G-Brownian motion, and bid-ask pricing application to finance under uncertainty, arXiv:1306.4070 [q-fin.PR].
  • [18] J. Yang and W. Zhao, Numerical simulations for G-Brownian motion, Front. Math. China 11, 1625-1643, 2016.
  • [19] L. C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. 67 (1), 251-282, 1936.

Sub-fractional $G$-Brownian motion: Properties and simulations

Year 2025, Volume: 54 Issue: 2, 599 - 617, 28.04.2025
https://doi.org/10.15672/hujms.1569080

Abstract

In this article, we introduce a new stochastic process called the sub-fractional $G$ -Brownian motion, which serves as an intermediate between the $G$ -Brownian motion and the fractional $G$ -Brownian motion. Although the sub-fractional $G$-Brownian motion shares some properties with the fractional $G$-Brownian motion, it features nonstationary increments. We then examine key characteristics of the process, such as self-similarity, H\"{o}lder continuity, and long-range dependence. Additionally, we propose a method for simulating sample paths of sub-fractional $G$-Brownian motion and conclude by simulating linear stochastic differential equations driven by sub-fractional $G$-Brownian motion.

Ethical Statement

The first named author acknowledges the funding of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy -The Berlin Mathematics Research Center MATH+(EXC-2046/1, project ID: 390685689), project EF4-6. The second and fourth named authors acknowledge the funding of the ERASMUS KA107 project.The third named author extends his appreciation to the Researchers Supporting Project number (RSPD2025R1075), King Saud University, Riyadh, Saudi Arabia.

Supporting Institution

FU Berlin and King Saud University

Project Number

EXC-2046/1 and RSPD2025R1075

Thanks

The first named author acknowledges the funding of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy -The Berlin Mathematics Research Center MATH+(EXC-2046/1, project ID: 390685689), project EF4-6. The second and fourth named authors acknowledge the funding of the ERASMUS KA107 project.The third named author extends his appreciation to the Researchers Supporting Project number (RSPD2025R1075), King Saud University, Riyadh, Saudi Arabia.

References

  • [1] M. Aneta and F. Darya, On the simulation of sub-fractional Brownian motion, 20th International Conference on Methods and Models in Automation and Robotics (MMAR), 400-405, 2015.
  • [2] T. Bojdecki, L. Gorostiza and A. Talarczyk, Sub-fractional Brownian motion and its relation to occupation times, Stat. Probab. Lett. 69 (4), 405-419, 2004.
  • [3] T.T. Dufera, Fractional Brownian motion in option pricing and dynamic delta hedging: Experimental simulations, N. Am. J. Econ. Finance. 69, Part B, 2024.
  • [4] M.D.N. da Costa, A.A. Brito, N.P.A. Castro, S.T.M.R. Dias and F.G. Zebende, Trends in the Air Temperature: A Practical Approach for Auto-and Cross-Correlation Analysis, Adv. Meteorol. 2024 (1), 2024.
  • [5] D. Feyel and A. De La Pradelle, On fractional Brownian processes, Potential Anal. 10, 273-288, 1999.
  • [6] W. Hu, Q. Yang, L. Peng, L. Liu, P. Zhang, S. Li and J. Wu, Non-stationary modeling and simulation of strong winds, Heliyon 10 (15), 2024.
  • [7] Y. Jicheng, F. Yuqiang and W. Xianjia, Lie symmetry, exact solutions and conservation laws of bi-fractional BlackScholes equation derived by the fractional G-Brownian motion, Int. J. Financ. Eng. 11 (1), 2024.
  • [8] A. E. Kyojo, E. S. Osima, S. S. Mirau and G. V. Masanja, Applying Stationary and Nonstationary Generalized Extreme Value Distributions in Modeling Annual Extreme Temperature Patterns, Adv. Meteorol. 2024 (1), 2024.
  • [9] D. Laurent, M. Hu and S. Peng, Function spaces and capacity related to a sublinear expectation: Application to G-Brownian motion paths, Potential Anal. 34, 139-161, 2011.
  • [10] R. Monjo and O. Meseguer-Ruiz, Review: Fractal Geometry in Precipitation, Atmosphere 15 (1), 2024.
  • [11] S. Peng, Stochastic Analysis and Applications: The Abel Symposium 2005, Springer Berlin, Heidelberg, 2007.
  • [12] S. Peng, G-Brownian motion and dynamic risk measure under volatility uncertainty, arXiv:0711.2834 [math.PR].
  • [13] S. Peng, Nonlinear expectations and stochastic calculus under uncertainty: with robust CLT and G-Brownian motion, Springer Nature, 2019.
  • [14] F. Shokrollahi, D. Ahmadian and L.V. Ballestra, Pricing Asian options under the mixed fractional Brownian motion with jumps, Math. Comput. Simul. 226, 172-183, 2024.
  • [15] C. Tudor, Some properties of the sub-fractional Brownian motion, Stochastics 79 (5), 431-448, 2007.
  • [16] A.C. Tudor, Analysis of variations for self-similar processes: a stochastic calculus approach, Springer Science & Business Media, 2013.
  • [17] C. Wei, G-white noise theory, wavelet decomposition for fractional G-Brownian motion, and bid-ask pricing application to finance under uncertainty, arXiv:1306.4070 [q-fin.PR].
  • [18] J. Yang and W. Zhao, Numerical simulations for G-Brownian motion, Front. Math. China 11, 1625-1643, 2016.
  • [19] L. C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. 67 (1), 251-282, 1936.
There are 19 citations in total.

Details

Primary Language English
Subjects Stochastic Analysis and Modelling
Journal Section Statistics
Authors

Omar Kebiri 0000-0002-1420-2071

Zakaria Boumezbeur 0000-0002-7654-2514

Mhamed Eddahbi 0000-0003-0889-3387

Hacene Boutabia 0000-0003-1319-2091

Project Number EXC-2046/1 and RSPD2025R1075
Early Pub Date January 31, 2025
Publication Date April 28, 2025
Submission Date October 17, 2024
Acceptance Date January 16, 2025
Published in Issue Year 2025 Volume: 54 Issue: 2

Cite

APA Kebiri, O., Boumezbeur, Z., Eddahbi, M., Boutabia, H. (2025). Sub-fractional $G$-Brownian motion: Properties and simulations. Hacettepe Journal of Mathematics and Statistics, 54(2), 599-617. https://doi.org/10.15672/hujms.1569080
AMA Kebiri O, Boumezbeur Z, Eddahbi M, Boutabia H. Sub-fractional $G$-Brownian motion: Properties and simulations. Hacettepe Journal of Mathematics and Statistics. April 2025;54(2):599-617. doi:10.15672/hujms.1569080
Chicago Kebiri, Omar, Zakaria Boumezbeur, Mhamed Eddahbi, and Hacene Boutabia. “Sub-Fractional $G$-Brownian Motion: Properties and Simulations”. Hacettepe Journal of Mathematics and Statistics 54, no. 2 (April 2025): 599-617. https://doi.org/10.15672/hujms.1569080.
EndNote Kebiri O, Boumezbeur Z, Eddahbi M, Boutabia H (April 1, 2025) Sub-fractional $G$-Brownian motion: Properties and simulations. Hacettepe Journal of Mathematics and Statistics 54 2 599–617.
IEEE O. Kebiri, Z. Boumezbeur, M. Eddahbi, and H. Boutabia, “Sub-fractional $G$-Brownian motion: Properties and simulations”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 2, pp. 599–617, 2025, doi: 10.15672/hujms.1569080.
ISNAD Kebiri, Omar et al. “Sub-Fractional $G$-Brownian Motion: Properties and Simulations”. Hacettepe Journal of Mathematics and Statistics 54/2 (April2025), 599-617. https://doi.org/10.15672/hujms.1569080.
JAMA Kebiri O, Boumezbeur Z, Eddahbi M, Boutabia H. Sub-fractional $G$-Brownian motion: Properties and simulations. Hacettepe Journal of Mathematics and Statistics. 2025;54:599–617.
MLA Kebiri, Omar et al. “Sub-Fractional $G$-Brownian Motion: Properties and Simulations”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 2, 2025, pp. 599-17, doi:10.15672/hujms.1569080.
Vancouver Kebiri O, Boumezbeur Z, Eddahbi M, Boutabia H. Sub-fractional $G$-Brownian motion: Properties and simulations. Hacettepe Journal of Mathematics and Statistics. 2025;54(2):599-617.