Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 4, 1308 - 1328, 29.08.2025
https://doi.org/10.15672/hujms.1487219

Abstract

References

  • [1] M. I. Abbas, Investigation of Langevin equation in terms of generalized proportional fractional derivatives with respect to another function. Filomat. 35(12), 4073-4085, 2021.
  • [2] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279, 57-66, 2013.
  • [3] M.S. Abdo, S.K. Panchal and A.M. Saeed, Fractional boundary value problem with $\psi$-Caputo fractional derivative, Proc.Indian Acad. Sci. 129 (5), 65 2019.
  • [4] B. Ahmad, M. Alghanmi, A. Alsaedi, H. M. Srivastava and S. K. Ntouyas, The Langevin Equation in Terms of Generalized Liouville-Caputo Derivatives with Nonlocal Boundary Conditions Involving a Generalized Fractional Integral, Mathematics 7(6), 533, 2019.
  • [5] R. Almeida, M. Jleli and B. Samet, A numerical study of fractional relaxationoscillation equations involving $\psi$-Caputo fractional derivative. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. Nat 113(3), 1873-1891, 2019.
  • [6] R. Almeida, A.B. Malinowska and M.T.T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Meth. Appl. Sci. 41 , 336352, 2018.
  • [7] H. M Alshehri and A. Khan, A Fractional Order Hepatitis C Mathematical Model with MittagLeffler Kernel. J. Funct. Spaces, 2021(1), 2524027, 2021.
  • [8] D. R. Anderson and D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Sys. App. 10, 109-137, 2015.
  • [9] S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouya and J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, B. Korean Math. Soc., 55, 1639-1657, 2018.
  • [10] A. Baihi, A. Kajouni, K. Hilal and H. Lmou, Laplace transform method for a coupled system of (p, q)-Caputo fractional differential equations . J. Appl. Math. Comput. 1-20, 2024.
  • [11] P. Bedi, A. Kumar, T. Abdeljawad and A. Khan, Study of Hilfer fractional evolution equations by the properties of controllability and stability. Alex. Eng. J. 60(4), 3741- 3749, 2021.
  • [12] P. Bedi, A. Kumar, T. Abdeljawad, A. Khan and J. F. Gómez-Aguilar, Mild solutions of coupled hybrid fractional order system with CaputoHadamard derivatives. Fractals, 29(6), 2150158, 2021.
  • [13] W. T. Coffey, Y. P. Kalmykov and J. T. Waldron, The Langevin Equation: with applications to stochastic problems in physics, chemistry and electrical engineering, World Sci, Singapore, 2004.
  • [14] K. Diethelm, The Analysis of Fractional Differential Equations, Lect. Notes Math, Springer: New York, NY, USA, 2010.
  • [15] L. Gaul, P. Klein and S. Kemple, Damping description involving fractional operators, Mech. Syst. Signal Process 5, 81-88, 1991.
  • [16] A.Granas and J. Dugundji, Fixed Point Theory, Springer, New York 2003.
  • [17] K. Hilal, A. Kajouni and H. Lmou, Boundary Value Problem for the Langevin Equation and Inclusion with the Hilfer Fractional Derivative. Int. J. Differ. Equ. 2022, 3386198, 2022.
  • [18] K. Hilal, A. Kajouni and H. Lmou, Existence and stability results for a coupled system of Hilfer fractional Langevin equation with non local integral boundary value conditions. Filomat, 37, 1241-1259, 2023.
  • [19] F. Jarad, T. Abdeljawad and J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Special Topics 226, 3457- 3471, 2017.
  • [20] F. Jarad, T. Abdeljawad, S. Rashid and Z. Hammouch, More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Adv. Difference Equ. 2020, 303, 2020.
  • [21] F. Jarad, M. A. Alqudah and T. Abdeljawad, On more general forms of proportional fractional operators, Open Math. 18, 167176, 2020.
  • [22] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264, 65-70, 2014.
  • [23] A. Khan and T. Abdeljawad, On existence results of coupled pantograph discrete fractional order difference equations with numerical application. Results Control Optim. 13, 100307, 2023.
  • [24] A. Khan, T. Abdeljawad and M. A. Alqudah, Neural networking study of worms in a wireless sensor model in the sense of fractal fractional. AIMS Math. 8(11), 26406- 26424, 2023.
  • [25] H. Khan, T. Abdeljawad, J. F. Gómez-Aguilar, H. Tajadodi and A. Khan, Fractional order Volterra integro-differential equation with Mittag-Leffler kernel. Fractals, 29(6), 2150154, 2021.
  • [26] A. Khan, H. M. Alshehri, T. Abdeljawad, Q. M. Al-Mdallal, H. Khan, Stability analysis of fractional nabla difference COVID-19 model. Results Phys. 22, 103888, 2021.
  • [27] H. Khan, J. F. Gomez-Aguilar, T. Abdeljawad and A. Khan, Existence results and stability criteria for ABC-fuzzy-Volterra integro-differential equation. Fractals, 28(8), 2040048, 2020.
  • [28] H. Khan, J. F. Gómez-Aguilar, A. Khan and T. S. Khan, Stability analysis for fractional order advectionreaction diffusion system. Physica A. 521, 737-751, 2019.
  • [29] H. Khan, M. Ibrahim, A. H. Abdel-Aty, M. M. Khashan, F. A. Khan and A. Khan, A fractional order Covid-19 epidemic model with Mittag-Leffler kernel. Chaos Solitons Fractals, 148, 111030, 2021.
  • [30] A. Khan, Z. A. Khan, T. Abdeljawad and H. Khan, Analytical analysis of fractionalorder sequential hybrid system with numerical application. Adv. Contin. Discrete Models. 2022(1), 12, 2022.
  • [31] H. Khan, A. Khan, W. Chen and K. Shah, Stability analysis and a numerical scheme for fractional KleinGordon equations. Math. Methods Appl. Sci, 42(2), 723-732, 2019.
  • [32] A. Khan, H. Khan, J. F. Gómez-Aguilar and T. Abdeljawad, Existence and Hyers- Ulam stability for a nonlinear singular fractional differential equations with Mittag- Leffler kernel. Chaos Solitons Fractals. 127, 422-427, 2019.
  • [33] H. Khan, Y. Li, A. Khan and A. Khan, Existence of solution for a fractionalorder LotkaVolterra reactiondiffusion model with MittagLeffler kernel. Math. Methods Appl. Sci., 42(9), 3377-3387, 2019.
  • [34] A. Khan, M. I. Syam, A. Zada and H. Khan, Stability analysis of nonlinear fractional differential equations with Caputo and Riemann-Liouville derivatives, Eur. Phys. J. Plus. 133(7), 1-9, 2018.
  • [35] H. Khan, C. Tunç, A. Alkhazan, B. Ameen and A. Khan, A generalization of Minkowskis inequality by Hahn integral operator. J. Taibah Univ. Sci. 12(5), 506- 513, 2018.
  • [36] H. Khan, C. Tunç, D. Baleanu, A. Khan and A. Alkhazzan, Inequalities for n-class of functions using the Saigo fractional integral operator. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. Nat., 113, 2407-2420, 2019.
  • [37] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
  • [38] M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk, Vol. 10, Iss. 1(63) , 123127, 1955.
  • [39] R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys. 29, 255284, 1966.
  • [40] Z.H. Liu and J.H. Sun, Nonlinear boundary value problems of fractional differential systems, Comp. Math. Appl. 64, 463-475, 2012.
  • [41] H. Lmou, K. Elkhalloufy, K. Hilal and A. Kajouni, Topological degree method for a new class of -Hilfer fractional differential Langevin equation. Gulf J. Math. 17(2), 5-19, 2024.
  • [42] H. Lmou, K. Hilal and A. Kajouni, A New Result for $\Phi$-Hilfer Fractional Pantograph- Type Langevin Equation and Inclusions. J. Math. 2022, 2441628, 2022.
  • [43] H. Lmou, K. Hilal and A. Kajouni, On a class of fractional Langevin inclusion with multi-point boundary conditions. Bol. Soc. Parana. Mat. 41, 13, 2023.
  • [44] H. Lmou, K. Hilal and A. Kajouni, Topological degree method for a $\psi$-Hilfer fractional differential equation involving two different fractional orders. J. Math. Sci. 280(2), 212-223, 2024.
  • [45] H. Lmou, K. Hilal and A. Kajouni, On a new class of $\Phi$-Caputo-type fractional differential Langevin equations involving the p-Laplacian operator. Bol. Soc. Mat. Mex. 30(2), 61, 2024.
  • [46] F. Mainardi, Fractional diffusive waves in viscoelastic solids, in: J.L. Wegner, F.R. Norwood (Eds.), Nonlinear Waves in Solids, Fairfield, 1995.
  • [47] F. Mainardi and P. Pironi, The fractional langevin equation: Brownian motion revisited, Extracta Math. 10, 14054, 1966.
  • [48] F. Mainardi, P. Pironi and F. Tampieri, On a generalization of the Basset problem via fractional calculus, Tabarrok B, Dost S, editors. Proceedings CANCAM 95, 2. Canada: University of Victoria, 95, 836837, 1995.
  • [49] R. Metzler and J. Klafter, Boundary value problems for fractional diffusione quations, Phys. A 278, 107-125, 2000.
  • [50] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley: New York, NY, USA, 1993.
  • [51] C. Ravichandran, K. Logeswari, A. Khan, T. Abdeljawad and J. F. Gómez-Aguilar, An epidemiological model for computer virus with AtanganaBaleanu fractional derivative. Results Phys. 51, 106601, 2023.
  • [52] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math. 26, 103-107, 2010.
  • [53] B. Samet and H. Aydi, Lyapunov-type inequalities for an anti-periodic fractional boundary value problem involving $\psi$-Caputo fractional derivative. J. Inequal. Appl. 2018(1), 1-11, 2018.
  • [54] A. Shah, R. A. Khan, A. Khan, H. Khan and J. F. GómezAguilar, Investigation of a system of nonlinear fractional order hybrid differential equations under usual boundary conditions for existence of solution. Math. Methods Appl. Sci. 44(2), 1628- 1638, 2021.
  • [55] A. A. Thirthar, P. Panja, A. Khan and M. A. Alqudah, An ecosystem model with memory effect considering global warming. J. Theor. Biol, 419, 13-22, 2017.

Existence and stability analysis for $\Phi$-Caputo generalized proportional fractional differential Langevin equation

Year 2025, Volume: 54 Issue: 4, 1308 - 1328, 29.08.2025
https://doi.org/10.15672/hujms.1487219

Abstract

This paper aims to investigate the existence, uniqueness and stability results for a new class of $\Phi$-Caputo generalized proportional fractional $(\mathsf{GPF})$ differential Langevin equation. We present and discuss some of the characteristics of the generalized proportional fractional derivative which can be considered as generalization and modification of the fractional conformable derivative by generating $\Phi$-Caputo generalized proportional fractional derivatives involving exponential functions in it's kernel also this kind of fractional derivative generalize the well-known fractional derivatives, for different values of function $\Phi$. Utilizing Krasnoselskii's fixed point theorem and the Banach contraction principle, we established results on existence and uniqueness, we also examine various types of stability, including Ulam-Hyers stability and generalized Ulam-Hyers stability. As an application, we provide an example to illustrate our theoretical result.

References

  • [1] M. I. Abbas, Investigation of Langevin equation in terms of generalized proportional fractional derivatives with respect to another function. Filomat. 35(12), 4073-4085, 2021.
  • [2] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279, 57-66, 2013.
  • [3] M.S. Abdo, S.K. Panchal and A.M. Saeed, Fractional boundary value problem with $\psi$-Caputo fractional derivative, Proc.Indian Acad. Sci. 129 (5), 65 2019.
  • [4] B. Ahmad, M. Alghanmi, A. Alsaedi, H. M. Srivastava and S. K. Ntouyas, The Langevin Equation in Terms of Generalized Liouville-Caputo Derivatives with Nonlocal Boundary Conditions Involving a Generalized Fractional Integral, Mathematics 7(6), 533, 2019.
  • [5] R. Almeida, M. Jleli and B. Samet, A numerical study of fractional relaxationoscillation equations involving $\psi$-Caputo fractional derivative. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. Nat 113(3), 1873-1891, 2019.
  • [6] R. Almeida, A.B. Malinowska and M.T.T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Meth. Appl. Sci. 41 , 336352, 2018.
  • [7] H. M Alshehri and A. Khan, A Fractional Order Hepatitis C Mathematical Model with MittagLeffler Kernel. J. Funct. Spaces, 2021(1), 2524027, 2021.
  • [8] D. R. Anderson and D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Sys. App. 10, 109-137, 2015.
  • [9] S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouya and J. Tariboon, Nonlocal boundary value problems for Hilfer fractional differential equations, B. Korean Math. Soc., 55, 1639-1657, 2018.
  • [10] A. Baihi, A. Kajouni, K. Hilal and H. Lmou, Laplace transform method for a coupled system of (p, q)-Caputo fractional differential equations . J. Appl. Math. Comput. 1-20, 2024.
  • [11] P. Bedi, A. Kumar, T. Abdeljawad and A. Khan, Study of Hilfer fractional evolution equations by the properties of controllability and stability. Alex. Eng. J. 60(4), 3741- 3749, 2021.
  • [12] P. Bedi, A. Kumar, T. Abdeljawad, A. Khan and J. F. Gómez-Aguilar, Mild solutions of coupled hybrid fractional order system with CaputoHadamard derivatives. Fractals, 29(6), 2150158, 2021.
  • [13] W. T. Coffey, Y. P. Kalmykov and J. T. Waldron, The Langevin Equation: with applications to stochastic problems in physics, chemistry and electrical engineering, World Sci, Singapore, 2004.
  • [14] K. Diethelm, The Analysis of Fractional Differential Equations, Lect. Notes Math, Springer: New York, NY, USA, 2010.
  • [15] L. Gaul, P. Klein and S. Kemple, Damping description involving fractional operators, Mech. Syst. Signal Process 5, 81-88, 1991.
  • [16] A.Granas and J. Dugundji, Fixed Point Theory, Springer, New York 2003.
  • [17] K. Hilal, A. Kajouni and H. Lmou, Boundary Value Problem for the Langevin Equation and Inclusion with the Hilfer Fractional Derivative. Int. J. Differ. Equ. 2022, 3386198, 2022.
  • [18] K. Hilal, A. Kajouni and H. Lmou, Existence and stability results for a coupled system of Hilfer fractional Langevin equation with non local integral boundary value conditions. Filomat, 37, 1241-1259, 2023.
  • [19] F. Jarad, T. Abdeljawad and J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Special Topics 226, 3457- 3471, 2017.
  • [20] F. Jarad, T. Abdeljawad, S. Rashid and Z. Hammouch, More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Adv. Difference Equ. 2020, 303, 2020.
  • [21] F. Jarad, M. A. Alqudah and T. Abdeljawad, On more general forms of proportional fractional operators, Open Math. 18, 167176, 2020.
  • [22] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264, 65-70, 2014.
  • [23] A. Khan and T. Abdeljawad, On existence results of coupled pantograph discrete fractional order difference equations with numerical application. Results Control Optim. 13, 100307, 2023.
  • [24] A. Khan, T. Abdeljawad and M. A. Alqudah, Neural networking study of worms in a wireless sensor model in the sense of fractal fractional. AIMS Math. 8(11), 26406- 26424, 2023.
  • [25] H. Khan, T. Abdeljawad, J. F. Gómez-Aguilar, H. Tajadodi and A. Khan, Fractional order Volterra integro-differential equation with Mittag-Leffler kernel. Fractals, 29(6), 2150154, 2021.
  • [26] A. Khan, H. M. Alshehri, T. Abdeljawad, Q. M. Al-Mdallal, H. Khan, Stability analysis of fractional nabla difference COVID-19 model. Results Phys. 22, 103888, 2021.
  • [27] H. Khan, J. F. Gomez-Aguilar, T. Abdeljawad and A. Khan, Existence results and stability criteria for ABC-fuzzy-Volterra integro-differential equation. Fractals, 28(8), 2040048, 2020.
  • [28] H. Khan, J. F. Gómez-Aguilar, A. Khan and T. S. Khan, Stability analysis for fractional order advectionreaction diffusion system. Physica A. 521, 737-751, 2019.
  • [29] H. Khan, M. Ibrahim, A. H. Abdel-Aty, M. M. Khashan, F. A. Khan and A. Khan, A fractional order Covid-19 epidemic model with Mittag-Leffler kernel. Chaos Solitons Fractals, 148, 111030, 2021.
  • [30] A. Khan, Z. A. Khan, T. Abdeljawad and H. Khan, Analytical analysis of fractionalorder sequential hybrid system with numerical application. Adv. Contin. Discrete Models. 2022(1), 12, 2022.
  • [31] H. Khan, A. Khan, W. Chen and K. Shah, Stability analysis and a numerical scheme for fractional KleinGordon equations. Math. Methods Appl. Sci, 42(2), 723-732, 2019.
  • [32] A. Khan, H. Khan, J. F. Gómez-Aguilar and T. Abdeljawad, Existence and Hyers- Ulam stability for a nonlinear singular fractional differential equations with Mittag- Leffler kernel. Chaos Solitons Fractals. 127, 422-427, 2019.
  • [33] H. Khan, Y. Li, A. Khan and A. Khan, Existence of solution for a fractionalorder LotkaVolterra reactiondiffusion model with MittagLeffler kernel. Math. Methods Appl. Sci., 42(9), 3377-3387, 2019.
  • [34] A. Khan, M. I. Syam, A. Zada and H. Khan, Stability analysis of nonlinear fractional differential equations with Caputo and Riemann-Liouville derivatives, Eur. Phys. J. Plus. 133(7), 1-9, 2018.
  • [35] H. Khan, C. Tunç, A. Alkhazan, B. Ameen and A. Khan, A generalization of Minkowskis inequality by Hahn integral operator. J. Taibah Univ. Sci. 12(5), 506- 513, 2018.
  • [36] H. Khan, C. Tunç, D. Baleanu, A. Khan and A. Alkhazzan, Inequalities for n-class of functions using the Saigo fractional integral operator. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. Nat., 113, 2407-2420, 2019.
  • [37] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
  • [38] M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk, Vol. 10, Iss. 1(63) , 123127, 1955.
  • [39] R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys. 29, 255284, 1966.
  • [40] Z.H. Liu and J.H. Sun, Nonlinear boundary value problems of fractional differential systems, Comp. Math. Appl. 64, 463-475, 2012.
  • [41] H. Lmou, K. Elkhalloufy, K. Hilal and A. Kajouni, Topological degree method for a new class of -Hilfer fractional differential Langevin equation. Gulf J. Math. 17(2), 5-19, 2024.
  • [42] H. Lmou, K. Hilal and A. Kajouni, A New Result for $\Phi$-Hilfer Fractional Pantograph- Type Langevin Equation and Inclusions. J. Math. 2022, 2441628, 2022.
  • [43] H. Lmou, K. Hilal and A. Kajouni, On a class of fractional Langevin inclusion with multi-point boundary conditions. Bol. Soc. Parana. Mat. 41, 13, 2023.
  • [44] H. Lmou, K. Hilal and A. Kajouni, Topological degree method for a $\psi$-Hilfer fractional differential equation involving two different fractional orders. J. Math. Sci. 280(2), 212-223, 2024.
  • [45] H. Lmou, K. Hilal and A. Kajouni, On a new class of $\Phi$-Caputo-type fractional differential Langevin equations involving the p-Laplacian operator. Bol. Soc. Mat. Mex. 30(2), 61, 2024.
  • [46] F. Mainardi, Fractional diffusive waves in viscoelastic solids, in: J.L. Wegner, F.R. Norwood (Eds.), Nonlinear Waves in Solids, Fairfield, 1995.
  • [47] F. Mainardi and P. Pironi, The fractional langevin equation: Brownian motion revisited, Extracta Math. 10, 14054, 1966.
  • [48] F. Mainardi, P. Pironi and F. Tampieri, On a generalization of the Basset problem via fractional calculus, Tabarrok B, Dost S, editors. Proceedings CANCAM 95, 2. Canada: University of Victoria, 95, 836837, 1995.
  • [49] R. Metzler and J. Klafter, Boundary value problems for fractional diffusione quations, Phys. A 278, 107-125, 2000.
  • [50] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley: New York, NY, USA, 1993.
  • [51] C. Ravichandran, K. Logeswari, A. Khan, T. Abdeljawad and J. F. Gómez-Aguilar, An epidemiological model for computer virus with AtanganaBaleanu fractional derivative. Results Phys. 51, 106601, 2023.
  • [52] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math. 26, 103-107, 2010.
  • [53] B. Samet and H. Aydi, Lyapunov-type inequalities for an anti-periodic fractional boundary value problem involving $\psi$-Caputo fractional derivative. J. Inequal. Appl. 2018(1), 1-11, 2018.
  • [54] A. Shah, R. A. Khan, A. Khan, H. Khan and J. F. GómezAguilar, Investigation of a system of nonlinear fractional order hybrid differential equations under usual boundary conditions for existence of solution. Math. Methods Appl. Sci. 44(2), 1628- 1638, 2021.
  • [55] A. A. Thirthar, P. Panja, A. Khan and M. A. Alqudah, An ecosystem model with memory effect considering global warming. J. Theor. Biol, 419, 13-22, 2017.
There are 55 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Mathematics
Authors

Hamid Lmou 0000-0002-8786-2230

Khalid Hilal 0000-0002-0806-2623

Ahmed Kajounı 0000-0001-8484-6107

Early Pub Date April 11, 2025
Publication Date August 29, 2025
Submission Date May 20, 2024
Acceptance Date November 18, 2024
Published in Issue Year 2025 Volume: 54 Issue: 4

Cite

APA Lmou, H., Hilal, K., & Kajounı, A. (2025). Existence and stability analysis for $\Phi$-Caputo generalized proportional fractional differential Langevin equation. Hacettepe Journal of Mathematics and Statistics, 54(4), 1308-1328. https://doi.org/10.15672/hujms.1487219
AMA Lmou H, Hilal K, Kajounı A. Existence and stability analysis for $\Phi$-Caputo generalized proportional fractional differential Langevin equation. Hacettepe Journal of Mathematics and Statistics. August 2025;54(4):1308-1328. doi:10.15672/hujms.1487219
Chicago Lmou, Hamid, Khalid Hilal, and Ahmed Kajounı. “Existence and Stability Analysis for $\Phi$-Caputo Generalized Proportional Fractional Differential Langevin Equation”. Hacettepe Journal of Mathematics and Statistics 54, no. 4 (August 2025): 1308-28. https://doi.org/10.15672/hujms.1487219.
EndNote Lmou H, Hilal K, Kajounı A (August 1, 2025) Existence and stability analysis for $\Phi$-Caputo generalized proportional fractional differential Langevin equation. Hacettepe Journal of Mathematics and Statistics 54 4 1308–1328.
IEEE H. Lmou, K. Hilal, and A. Kajounı, “Existence and stability analysis for $\Phi$-Caputo generalized proportional fractional differential Langevin equation”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, pp. 1308–1328, 2025, doi: 10.15672/hujms.1487219.
ISNAD Lmou, Hamid et al. “Existence and Stability Analysis for $\Phi$-Caputo Generalized Proportional Fractional Differential Langevin Equation”. Hacettepe Journal of Mathematics and Statistics 54/4 (August2025), 1308-1328. https://doi.org/10.15672/hujms.1487219.
JAMA Lmou H, Hilal K, Kajounı A. Existence and stability analysis for $\Phi$-Caputo generalized proportional fractional differential Langevin equation. Hacettepe Journal of Mathematics and Statistics. 2025;54:1308–1328.
MLA Lmou, Hamid et al. “Existence and Stability Analysis for $\Phi$-Caputo Generalized Proportional Fractional Differential Langevin Equation”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, 2025, pp. 1308-2, doi:10.15672/hujms.1487219.
Vancouver Lmou H, Hilal K, Kajounı A. Existence and stability analysis for $\Phi$-Caputo generalized proportional fractional differential Langevin equation. Hacettepe Journal of Mathematics and Statistics. 2025;54(4):1308-2.