Year 2025,
Volume: 54 Issue: 4, 1308 - 1328, 29.08.2025
Hamid Lmou
,
Khalid Hilal
,
Ahmed Kajounı
References
-
[1] M. I. Abbas, Investigation of Langevin equation in terms of generalized proportional
fractional derivatives with respect to another function. Filomat. 35(12), 4073-4085,
2021.
-
[2] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279,
57-66, 2013.
-
[3] M.S. Abdo, S.K. Panchal and A.M. Saeed, Fractional boundary value problem with
$\psi$-Caputo fractional derivative, Proc.Indian Acad. Sci. 129 (5), 65 2019.
-
[4] B. Ahmad, M. Alghanmi, A. Alsaedi, H. M. Srivastava and S. K. Ntouyas, The
Langevin Equation in Terms of Generalized Liouville-Caputo Derivatives with Nonlocal
Boundary Conditions Involving a Generalized Fractional Integral, Mathematics
7(6), 533, 2019.
-
[5] R. Almeida, M. Jleli and B. Samet, A numerical study of fractional relaxationoscillation
equations involving $\psi$-Caputo fractional derivative. Rev. R. Acad. Cienc. Exactas
Fs. Nat. Ser. A Mat. Nat 113(3), 1873-1891, 2019.
-
[6] R. Almeida, A.B. Malinowska and M.T.T. Monteiro, Fractional differential equations
with a Caputo derivative with respect to a kernel function and their applications,
Math. Meth. Appl. Sci. 41 , 336352, 2018.
-
[7] H. M Alshehri and A. Khan, A Fractional Order Hepatitis C Mathematical Model
with MittagLeffler Kernel. J. Funct. Spaces, 2021(1), 2524027, 2021.
-
[8] D. R. Anderson and D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn.
Sys. App. 10, 109-137, 2015.
-
[9] S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouya and J. Tariboon, Nonlocal boundary
value problems for Hilfer fractional differential equations, B. Korean Math. Soc., 55,
1639-1657, 2018.
-
[10] A. Baihi, A. Kajouni, K. Hilal and H. Lmou, Laplace transform method for a coupled
system of (p, q)-Caputo fractional differential equations . J. Appl. Math. Comput.
1-20, 2024.
-
[11] P. Bedi, A. Kumar, T. Abdeljawad and A. Khan, Study of Hilfer fractional evolution
equations by the properties of controllability and stability. Alex. Eng. J. 60(4), 3741-
3749, 2021.
-
[12] P. Bedi, A. Kumar, T. Abdeljawad, A. Khan and J. F. Gómez-Aguilar, Mild solutions
of coupled hybrid fractional order system with CaputoHadamard derivatives. Fractals,
29(6), 2150158, 2021.
-
[13] W. T. Coffey, Y. P. Kalmykov and J. T. Waldron, The Langevin Equation: with
applications to stochastic problems in physics, chemistry and electrical engineering,
World Sci, Singapore, 2004.
-
[14] K. Diethelm, The Analysis of Fractional Differential Equations, Lect. Notes Math,
Springer: New York, NY, USA, 2010.
-
[15] L. Gaul, P. Klein and S. Kemple, Damping description involving fractional operators,
Mech. Syst. Signal Process 5, 81-88, 1991.
-
[16] A.Granas and J. Dugundji, Fixed Point Theory, Springer, New York 2003.
-
[17] K. Hilal, A. Kajouni and H. Lmou, Boundary Value Problem for the Langevin Equation
and Inclusion with the Hilfer Fractional Derivative. Int. J. Differ. Equ. 2022,
3386198, 2022.
-
[18] K. Hilal, A. Kajouni and H. Lmou, Existence and stability results for a coupled system
of Hilfer fractional Langevin equation with non local integral boundary value conditions.
Filomat, 37, 1241-1259, 2023.
-
[19] F. Jarad, T. Abdeljawad and J. Alzabut, Generalized fractional derivatives generated
by a class of local proportional derivatives, Eur. Phys. J. Special Topics 226, 3457-
3471, 2017.
-
[20] F. Jarad, T. Abdeljawad, S. Rashid and Z. Hammouch, More properties of the proportional
fractional integrals and derivatives of a function with respect to another
function, Adv. Difference Equ. 2020, 303, 2020.
-
[21] F. Jarad, M. A. Alqudah and T. Abdeljawad, On more general forms of proportional
fractional operators, Open Math. 18, 167176, 2020.
-
[22] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional
derivative, J. Comput. Appl. Math. 264, 65-70, 2014.
-
[23] A. Khan and T. Abdeljawad, On existence results of coupled pantograph discrete fractional
order difference equations with numerical application. Results Control Optim.
13, 100307, 2023.
-
[24] A. Khan, T. Abdeljawad and M. A. Alqudah, Neural networking study of worms in
a wireless sensor model in the sense of fractal fractional. AIMS Math. 8(11), 26406-
26424, 2023.
-
[25] H. Khan, T. Abdeljawad, J. F. Gómez-Aguilar, H. Tajadodi and A. Khan, Fractional
order Volterra integro-differential equation with Mittag-Leffler kernel. Fractals, 29(6),
2150154, 2021.
-
[26] A. Khan, H. M. Alshehri, T. Abdeljawad, Q. M. Al-Mdallal, H. Khan, Stability analysis
of fractional nabla difference COVID-19 model. Results Phys. 22, 103888, 2021.
-
[27] H. Khan, J. F. Gomez-Aguilar, T. Abdeljawad and A. Khan, Existence results and
stability criteria for ABC-fuzzy-Volterra integro-differential equation. Fractals, 28(8),
2040048, 2020.
-
[28] H. Khan, J. F. Gómez-Aguilar, A. Khan and T. S. Khan, Stability analysis for fractional
order advectionreaction diffusion system. Physica A. 521, 737-751, 2019.
-
[29] H. Khan, M. Ibrahim, A. H. Abdel-Aty, M. M. Khashan, F. A. Khan and A. Khan, A
fractional order Covid-19 epidemic model with Mittag-Leffler kernel. Chaos Solitons
Fractals, 148, 111030, 2021.
-
[30] A. Khan, Z. A. Khan, T. Abdeljawad and H. Khan, Analytical analysis of fractionalorder
sequential hybrid system with numerical application. Adv. Contin. Discrete Models.
2022(1), 12, 2022.
-
[31] H. Khan, A. Khan, W. Chen and K. Shah, Stability analysis and a numerical scheme
for fractional KleinGordon equations. Math. Methods Appl. Sci, 42(2), 723-732, 2019.
-
[32] A. Khan, H. Khan, J. F. Gómez-Aguilar and T. Abdeljawad, Existence and Hyers-
Ulam stability for a nonlinear singular fractional differential equations with Mittag-
Leffler kernel. Chaos Solitons Fractals. 127, 422-427, 2019.
-
[33] H. Khan, Y. Li, A. Khan and A. Khan, Existence of solution for a fractionalorder
LotkaVolterra reactiondiffusion model with MittagLeffler kernel. Math. Methods Appl.
Sci., 42(9), 3377-3387, 2019.
-
[34] A. Khan, M. I. Syam, A. Zada and H. Khan, Stability analysis of nonlinear fractional
differential equations with Caputo and Riemann-Liouville derivatives, Eur. Phys. J.
Plus. 133(7), 1-9, 2018.
-
[35] H. Khan, C. Tunç, A. Alkhazan, B. Ameen and A. Khan, A generalization of
Minkowskis inequality by Hahn integral operator. J. Taibah Univ. Sci. 12(5), 506-
513, 2018.
-
[36] H. Khan, C. Tunç, D. Baleanu, A. Khan and A. Alkhazzan, Inequalities for n-class of
functions using the Saigo fractional integral operator. Rev. R. Acad. Cienc. Exactas
Fs. Nat. Ser. A Mat. Nat., 113, 2407-2420, 2019.
-
[37] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional
differential equations, Amsterdam: Elsevier, 2006.
-
[38] M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi
Mat. Nauk, Vol. 10, Iss. 1(63) , 123127, 1955.
-
[39] R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys. 29, 255284, 1966.
-
[40] Z.H. Liu and J.H. Sun, Nonlinear boundary value problems of fractional differential
systems, Comp. Math. Appl. 64, 463-475, 2012.
-
[41] H. Lmou, K. Elkhalloufy, K. Hilal and A. Kajouni, Topological degree method for a
new class of -Hilfer fractional differential Langevin equation. Gulf J. Math. 17(2),
5-19, 2024.
-
[42] H. Lmou, K. Hilal and A. Kajouni, A New Result for $\Phi$-Hilfer Fractional Pantograph-
Type Langevin Equation and Inclusions. J. Math. 2022, 2441628, 2022.
-
[43] H. Lmou, K. Hilal and A. Kajouni, On a class of fractional Langevin inclusion with
multi-point boundary conditions. Bol. Soc. Parana. Mat. 41, 13, 2023.
-
[44] H. Lmou, K. Hilal and A. Kajouni, Topological degree method for a $\psi$-Hilfer fractional
differential equation involving two different fractional orders. J. Math. Sci. 280(2),
212-223, 2024.
-
[45] H. Lmou, K. Hilal and A. Kajouni, On a new class of $\Phi$-Caputo-type fractional differential
Langevin equations involving the p-Laplacian operator. Bol. Soc. Mat. Mex.
30(2), 61, 2024.
-
[46] F. Mainardi, Fractional diffusive waves in viscoelastic solids, in: J.L. Wegner, F.R.
Norwood (Eds.), Nonlinear Waves in Solids, Fairfield, 1995.
-
[47] F. Mainardi and P. Pironi, The fractional langevin equation: Brownian motion revisited,
Extracta Math. 10, 14054, 1966.
-
[48] F. Mainardi, P. Pironi and F. Tampieri, On a generalization of the Basset problem
via fractional calculus, Tabarrok B, Dost S, editors. Proceedings CANCAM 95, 2.
Canada: University of Victoria, 95, 836837, 1995.
-
[49] R. Metzler and J. Klafter, Boundary value problems for fractional diffusione quations,
Phys. A 278, 107-125, 2000.
-
[50] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential
Equations, John Wiley: New York, NY, USA, 1993.
-
[51] C. Ravichandran, K. Logeswari, A. Khan, T. Abdeljawad and J. F. Gómez-Aguilar,
An epidemiological model for computer virus with AtanganaBaleanu fractional derivative.
Results Phys. 51, 106601, 2023.
-
[52] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space,
Carpathian J. Math. 26, 103-107, 2010.
-
[53] B. Samet and H. Aydi, Lyapunov-type inequalities for an anti-periodic fractional
boundary value problem involving $\psi$-Caputo fractional derivative. J. Inequal. Appl.
2018(1), 1-11, 2018.
-
[54] A. Shah, R. A. Khan, A. Khan, H. Khan and J. F. GómezAguilar, Investigation
of a system of nonlinear fractional order hybrid differential equations under usual
boundary conditions for existence of solution. Math. Methods Appl. Sci. 44(2), 1628-
1638, 2021.
-
[55] A. A. Thirthar, P. Panja, A. Khan and M. A. Alqudah, An ecosystem model with
memory effect considering global warming. J. Theor. Biol, 419, 13-22, 2017.
Existence and stability analysis for $\Phi$-Caputo generalized proportional fractional differential Langevin equation
Year 2025,
Volume: 54 Issue: 4, 1308 - 1328, 29.08.2025
Hamid Lmou
,
Khalid Hilal
,
Ahmed Kajounı
Abstract
This paper aims to investigate the existence, uniqueness and stability results for a new class of $\Phi$-Caputo generalized proportional fractional $(\mathsf{GPF})$ differential Langevin equation. We present and discuss some of the characteristics of the generalized proportional fractional derivative which can be considered as generalization and modification of the fractional conformable derivative by generating $\Phi$-Caputo generalized proportional fractional derivatives involving exponential functions in it's kernel also this kind of fractional derivative generalize the well-known fractional derivatives, for different values of function $\Phi$. Utilizing Krasnoselskii's fixed point theorem and the Banach contraction principle, we established results on existence and uniqueness, we also examine various types of stability, including Ulam-Hyers stability and generalized Ulam-Hyers stability. As an application, we provide an example to illustrate our theoretical result.
References
-
[1] M. I. Abbas, Investigation of Langevin equation in terms of generalized proportional
fractional derivatives with respect to another function. Filomat. 35(12), 4073-4085,
2021.
-
[2] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279,
57-66, 2013.
-
[3] M.S. Abdo, S.K. Panchal and A.M. Saeed, Fractional boundary value problem with
$\psi$-Caputo fractional derivative, Proc.Indian Acad. Sci. 129 (5), 65 2019.
-
[4] B. Ahmad, M. Alghanmi, A. Alsaedi, H. M. Srivastava and S. K. Ntouyas, The
Langevin Equation in Terms of Generalized Liouville-Caputo Derivatives with Nonlocal
Boundary Conditions Involving a Generalized Fractional Integral, Mathematics
7(6), 533, 2019.
-
[5] R. Almeida, M. Jleli and B. Samet, A numerical study of fractional relaxationoscillation
equations involving $\psi$-Caputo fractional derivative. Rev. R. Acad. Cienc. Exactas
Fs. Nat. Ser. A Mat. Nat 113(3), 1873-1891, 2019.
-
[6] R. Almeida, A.B. Malinowska and M.T.T. Monteiro, Fractional differential equations
with a Caputo derivative with respect to a kernel function and their applications,
Math. Meth. Appl. Sci. 41 , 336352, 2018.
-
[7] H. M Alshehri and A. Khan, A Fractional Order Hepatitis C Mathematical Model
with MittagLeffler Kernel. J. Funct. Spaces, 2021(1), 2524027, 2021.
-
[8] D. R. Anderson and D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn.
Sys. App. 10, 109-137, 2015.
-
[9] S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouya and J. Tariboon, Nonlocal boundary
value problems for Hilfer fractional differential equations, B. Korean Math. Soc., 55,
1639-1657, 2018.
-
[10] A. Baihi, A. Kajouni, K. Hilal and H. Lmou, Laplace transform method for a coupled
system of (p, q)-Caputo fractional differential equations . J. Appl. Math. Comput.
1-20, 2024.
-
[11] P. Bedi, A. Kumar, T. Abdeljawad and A. Khan, Study of Hilfer fractional evolution
equations by the properties of controllability and stability. Alex. Eng. J. 60(4), 3741-
3749, 2021.
-
[12] P. Bedi, A. Kumar, T. Abdeljawad, A. Khan and J. F. Gómez-Aguilar, Mild solutions
of coupled hybrid fractional order system with CaputoHadamard derivatives. Fractals,
29(6), 2150158, 2021.
-
[13] W. T. Coffey, Y. P. Kalmykov and J. T. Waldron, The Langevin Equation: with
applications to stochastic problems in physics, chemistry and electrical engineering,
World Sci, Singapore, 2004.
-
[14] K. Diethelm, The Analysis of Fractional Differential Equations, Lect. Notes Math,
Springer: New York, NY, USA, 2010.
-
[15] L. Gaul, P. Klein and S. Kemple, Damping description involving fractional operators,
Mech. Syst. Signal Process 5, 81-88, 1991.
-
[16] A.Granas and J. Dugundji, Fixed Point Theory, Springer, New York 2003.
-
[17] K. Hilal, A. Kajouni and H. Lmou, Boundary Value Problem for the Langevin Equation
and Inclusion with the Hilfer Fractional Derivative. Int. J. Differ. Equ. 2022,
3386198, 2022.
-
[18] K. Hilal, A. Kajouni and H. Lmou, Existence and stability results for a coupled system
of Hilfer fractional Langevin equation with non local integral boundary value conditions.
Filomat, 37, 1241-1259, 2023.
-
[19] F. Jarad, T. Abdeljawad and J. Alzabut, Generalized fractional derivatives generated
by a class of local proportional derivatives, Eur. Phys. J. Special Topics 226, 3457-
3471, 2017.
-
[20] F. Jarad, T. Abdeljawad, S. Rashid and Z. Hammouch, More properties of the proportional
fractional integrals and derivatives of a function with respect to another
function, Adv. Difference Equ. 2020, 303, 2020.
-
[21] F. Jarad, M. A. Alqudah and T. Abdeljawad, On more general forms of proportional
fractional operators, Open Math. 18, 167176, 2020.
-
[22] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional
derivative, J. Comput. Appl. Math. 264, 65-70, 2014.
-
[23] A. Khan and T. Abdeljawad, On existence results of coupled pantograph discrete fractional
order difference equations with numerical application. Results Control Optim.
13, 100307, 2023.
-
[24] A. Khan, T. Abdeljawad and M. A. Alqudah, Neural networking study of worms in
a wireless sensor model in the sense of fractal fractional. AIMS Math. 8(11), 26406-
26424, 2023.
-
[25] H. Khan, T. Abdeljawad, J. F. Gómez-Aguilar, H. Tajadodi and A. Khan, Fractional
order Volterra integro-differential equation with Mittag-Leffler kernel. Fractals, 29(6),
2150154, 2021.
-
[26] A. Khan, H. M. Alshehri, T. Abdeljawad, Q. M. Al-Mdallal, H. Khan, Stability analysis
of fractional nabla difference COVID-19 model. Results Phys. 22, 103888, 2021.
-
[27] H. Khan, J. F. Gomez-Aguilar, T. Abdeljawad and A. Khan, Existence results and
stability criteria for ABC-fuzzy-Volterra integro-differential equation. Fractals, 28(8),
2040048, 2020.
-
[28] H. Khan, J. F. Gómez-Aguilar, A. Khan and T. S. Khan, Stability analysis for fractional
order advectionreaction diffusion system. Physica A. 521, 737-751, 2019.
-
[29] H. Khan, M. Ibrahim, A. H. Abdel-Aty, M. M. Khashan, F. A. Khan and A. Khan, A
fractional order Covid-19 epidemic model with Mittag-Leffler kernel. Chaos Solitons
Fractals, 148, 111030, 2021.
-
[30] A. Khan, Z. A. Khan, T. Abdeljawad and H. Khan, Analytical analysis of fractionalorder
sequential hybrid system with numerical application. Adv. Contin. Discrete Models.
2022(1), 12, 2022.
-
[31] H. Khan, A. Khan, W. Chen and K. Shah, Stability analysis and a numerical scheme
for fractional KleinGordon equations. Math. Methods Appl. Sci, 42(2), 723-732, 2019.
-
[32] A. Khan, H. Khan, J. F. Gómez-Aguilar and T. Abdeljawad, Existence and Hyers-
Ulam stability for a nonlinear singular fractional differential equations with Mittag-
Leffler kernel. Chaos Solitons Fractals. 127, 422-427, 2019.
-
[33] H. Khan, Y. Li, A. Khan and A. Khan, Existence of solution for a fractionalorder
LotkaVolterra reactiondiffusion model with MittagLeffler kernel. Math. Methods Appl.
Sci., 42(9), 3377-3387, 2019.
-
[34] A. Khan, M. I. Syam, A. Zada and H. Khan, Stability analysis of nonlinear fractional
differential equations with Caputo and Riemann-Liouville derivatives, Eur. Phys. J.
Plus. 133(7), 1-9, 2018.
-
[35] H. Khan, C. Tunç, A. Alkhazan, B. Ameen and A. Khan, A generalization of
Minkowskis inequality by Hahn integral operator. J. Taibah Univ. Sci. 12(5), 506-
513, 2018.
-
[36] H. Khan, C. Tunç, D. Baleanu, A. Khan and A. Alkhazzan, Inequalities for n-class of
functions using the Saigo fractional integral operator. Rev. R. Acad. Cienc. Exactas
Fs. Nat. Ser. A Mat. Nat., 113, 2407-2420, 2019.
-
[37] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional
differential equations, Amsterdam: Elsevier, 2006.
-
[38] M. A. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi
Mat. Nauk, Vol. 10, Iss. 1(63) , 123127, 1955.
-
[39] R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys. 29, 255284, 1966.
-
[40] Z.H. Liu and J.H. Sun, Nonlinear boundary value problems of fractional differential
systems, Comp. Math. Appl. 64, 463-475, 2012.
-
[41] H. Lmou, K. Elkhalloufy, K. Hilal and A. Kajouni, Topological degree method for a
new class of -Hilfer fractional differential Langevin equation. Gulf J. Math. 17(2),
5-19, 2024.
-
[42] H. Lmou, K. Hilal and A. Kajouni, A New Result for $\Phi$-Hilfer Fractional Pantograph-
Type Langevin Equation and Inclusions. J. Math. 2022, 2441628, 2022.
-
[43] H. Lmou, K. Hilal and A. Kajouni, On a class of fractional Langevin inclusion with
multi-point boundary conditions. Bol. Soc. Parana. Mat. 41, 13, 2023.
-
[44] H. Lmou, K. Hilal and A. Kajouni, Topological degree method for a $\psi$-Hilfer fractional
differential equation involving two different fractional orders. J. Math. Sci. 280(2),
212-223, 2024.
-
[45] H. Lmou, K. Hilal and A. Kajouni, On a new class of $\Phi$-Caputo-type fractional differential
Langevin equations involving the p-Laplacian operator. Bol. Soc. Mat. Mex.
30(2), 61, 2024.
-
[46] F. Mainardi, Fractional diffusive waves in viscoelastic solids, in: J.L. Wegner, F.R.
Norwood (Eds.), Nonlinear Waves in Solids, Fairfield, 1995.
-
[47] F. Mainardi and P. Pironi, The fractional langevin equation: Brownian motion revisited,
Extracta Math. 10, 14054, 1966.
-
[48] F. Mainardi, P. Pironi and F. Tampieri, On a generalization of the Basset problem
via fractional calculus, Tabarrok B, Dost S, editors. Proceedings CANCAM 95, 2.
Canada: University of Victoria, 95, 836837, 1995.
-
[49] R. Metzler and J. Klafter, Boundary value problems for fractional diffusione quations,
Phys. A 278, 107-125, 2000.
-
[50] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential
Equations, John Wiley: New York, NY, USA, 1993.
-
[51] C. Ravichandran, K. Logeswari, A. Khan, T. Abdeljawad and J. F. Gómez-Aguilar,
An epidemiological model for computer virus with AtanganaBaleanu fractional derivative.
Results Phys. 51, 106601, 2023.
-
[52] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space,
Carpathian J. Math. 26, 103-107, 2010.
-
[53] B. Samet and H. Aydi, Lyapunov-type inequalities for an anti-periodic fractional
boundary value problem involving $\psi$-Caputo fractional derivative. J. Inequal. Appl.
2018(1), 1-11, 2018.
-
[54] A. Shah, R. A. Khan, A. Khan, H. Khan and J. F. GómezAguilar, Investigation
of a system of nonlinear fractional order hybrid differential equations under usual
boundary conditions for existence of solution. Math. Methods Appl. Sci. 44(2), 1628-
1638, 2021.
-
[55] A. A. Thirthar, P. Panja, A. Khan and M. A. Alqudah, An ecosystem model with
memory effect considering global warming. J. Theor. Biol, 419, 13-22, 2017.