Year 2025,
Volume: 54 Issue: 4, 1501 - 1517, 29.08.2025
Jihane Abdelli
,
Brahimi Brahim
References
-
[1] P. Artzner, F. Delbaen, J.M. Eber and D. Heath, Coherent measures of risk, Mathematical
Finance 9, 203-228, 1999.
-
[2] J. Beirlant, G. Matthys, and G. Dierckx, Heavy-tailed distributions and rating, Astin
Bulletin 31 (1), 37-58, 2001.
-
[3] J. Beirlant, A. Guillou, G. Dierckx and A. Fils-Viletard, Estimation of the extreme
value index and extreme quantiles under random censoring, Extremes 10 (3), 151-174,
2007.
-
[4] B. Brahimi, D. Meraghni and A. Necir, Gaussian approximation to the extreme value
index estimator of a heavy-tailed distribution under random censoring, Mathematical
Methods of Statistics 24 (4), 266-279, 2015.
-
[5] B. Brahimi, D. Meraghni and A. Necir, Distortion risk measures for sums of dependent
losses, African Statistics 5, 260-267, 2010.
-
[6] B. Brahimi, D. Meraghni, A. Necir and R. Zitikis, Estimating the distortion parameter
of the proportional-hazard premium for heavy-tailed losses, Insurance: Mathematics and
Economics 49 (3), 325-334, 2011.
-
[7] M. Denuit, J. Dhaene, M. Goovaerts and R. Kaas, Actuarial Theory for Dependent
Risks: Measures, Orders and Models, John Wiley & Sons, Ltd., 2005.
-
[8] L. de Haan and A. Ferreira, Extreme Value Theory: An Introduction, Springer, 2006.
-
[9] L. de Haan and H. Rootzén, On the estimation of high quantiles, Journal of Statistical
Planning and Inference 35, 1-13, 1993.
-
[10] L. de Haan and U. Stadtmüller, Generalized regular variation of second order, Journal
of the Australian Mathematical Society (Series A) 61, 381-395, 1996.
-
[11] M. Eling and W. Schnell, What Do We Know About Cyber Risk and Cyber Risk
Insurance?, Journal of Risk Finance 21 (5), 471-492, 2020.
-
[12] J.H.J. Einmahl, A. Fils-Villetard and A. Guillou, Statistics of extremes under random
censoring, Bernoulli 14 (1), 207-227, 2008.
-
[13] P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance
and Finance, Applications of Mathematics (New York), 33. Springer-Verlag, Berlin,
1997.
-
[14] E. Furman and R. Zitikis, Weighted premium calculation principles, Insurance: Mathematics
and Economics 42, 459-465, 2008.
-
[15] E. Furman and R. Zitikis, Weighted risk capital allocations, Insurance: Mathematics
and Economics 43, 263-269, 2008.
-
[16] Y. Goegebeur, A. Guillou and J. Qin, Extreme value estimation of the conditional
risk premium in reinsurance, Insurance: Mathematics and Economics 96, 68-80, 2021.
-
[17] P. Hall, On some simple estimates of an exponent of regular variation, Journal of the
Royal Statistical Society, Series B 44, 37-42, 1982.
-
[18] B.M. Hill, A simple general approach to inference about the tail of a distribution,
Annals of Statistics 3 (5), 1163-1174, 1975.
-
[19] W. Hürlimann, On stop-loss order and the distortion pricing principle, ASTIN Bulletin
28, 119-134, 1998.
-
[20] E.L. Kaplan and P. Meier, Nonparametric estimation from incomplete observations,
Journal of the American Statistical Association 53, 457-481, 1958.
-
[21] A. Necir, D. Meraghni and F. Meddi, Statistical estimate of the proportional hazard
premium of loss, Scandinavian Actuarial Journal 2007 (3), 147-161, 2007.
-
[22] S.I. Resnick, Heavy-Tail Phenomena: Probabilistic and Statistical Modeling, Springer
Series in Operations Research and Financial Engineering. New York: Springer, 2007.
-
[23] R.D. Reiss and M. Thomas, Statistical Analysis of Extreme Values with Applications
to Insurance, Finance, Hydrology and Other Fields, Birkhäuser, Basel, 1997.
-
[24] W. Stute and J.-L. Wang, The strong law under random censorship, Annals of Statistics
21, 1591-1607, 1993.
-
[25] B. Vandewalle and J. Beirlant, On univariate extreme value statistics and the estimation
of reinsurance premiums, Insurance: Mathematics and Economics 38, 441-459,
2006.
-
[26] S.S. Wang, Insurance pricing and increased limits ratemaking by proportional hazards
transforms, Insurance: Mathematics and Economics 17, 43-54, 1995.
-
[27] S.S. Wang, A class of distortion operators for pricing financial and insurance risks,
Journal of Risk and Insurance 67, 15-36, 2000.
-
[28] J. Wirch and M. Hardy, A Synthesis of Risk Measures for Capital Adequacy, Insurance:
Mathematics and Economics 25, 337-347, 1999.
Estimation of distortion risk premiums in reinsurance under random right-censoring
Year 2025,
Volume: 54 Issue: 4, 1501 - 1517, 29.08.2025
Jihane Abdelli
,
Brahimi Brahim
Abstract
This paper focuses on the estimation of distortion risk premiums for large reinsurance claims in the context of random right-censoring. We build an asymptotically normal estimator which is based on censored observations for Pareto-type distributions which represent heavy-tailed risks. The method combines semi-parametric extremes with extreme value theory to yield coherent premium estimates under the most challenging claim data scenarios. The provided simulations in conjunction with comprehensive censoring contexts and variances in tail heaviness illustrates the estimator's robustness and outperformance. Empirical assessment using Norwegian fire claims together with cybersecurity breach datasets adds to the proven value of the methodology. This work presents a robust approach to the estimation of risk at extreme values under censoring that directly impacts excess-of-loss reinsurance contracts and the solvency capital requirements defined by the risk decisions made by actuaries and managerial stakeholders.
Thanks
Please find enclosed my paper, co-authored by Brahimi brahim
Entitled: “Estimation of Distortion Risk Premiums in reinsurance under random right-censoring”, which I submit for possible publication to Hacettepe Journal of Mathematics and Statistics
Conflicts of Interest:
The authors declare no conflicts of interest regarding the publication of this paper.
Should you have any questions or require further information concerning this submission, please contact me at the address listed below.
Best regards,
Jihane Abdelli, PhD, Professor
Laboratory of Applied Mathematics
Mohamed Khider Universy of Biskra,
PO Box 145 RP, Biskra, 07000, Algeria
References
-
[1] P. Artzner, F. Delbaen, J.M. Eber and D. Heath, Coherent measures of risk, Mathematical
Finance 9, 203-228, 1999.
-
[2] J. Beirlant, G. Matthys, and G. Dierckx, Heavy-tailed distributions and rating, Astin
Bulletin 31 (1), 37-58, 2001.
-
[3] J. Beirlant, A. Guillou, G. Dierckx and A. Fils-Viletard, Estimation of the extreme
value index and extreme quantiles under random censoring, Extremes 10 (3), 151-174,
2007.
-
[4] B. Brahimi, D. Meraghni and A. Necir, Gaussian approximation to the extreme value
index estimator of a heavy-tailed distribution under random censoring, Mathematical
Methods of Statistics 24 (4), 266-279, 2015.
-
[5] B. Brahimi, D. Meraghni and A. Necir, Distortion risk measures for sums of dependent
losses, African Statistics 5, 260-267, 2010.
-
[6] B. Brahimi, D. Meraghni, A. Necir and R. Zitikis, Estimating the distortion parameter
of the proportional-hazard premium for heavy-tailed losses, Insurance: Mathematics and
Economics 49 (3), 325-334, 2011.
-
[7] M. Denuit, J. Dhaene, M. Goovaerts and R. Kaas, Actuarial Theory for Dependent
Risks: Measures, Orders and Models, John Wiley & Sons, Ltd., 2005.
-
[8] L. de Haan and A. Ferreira, Extreme Value Theory: An Introduction, Springer, 2006.
-
[9] L. de Haan and H. Rootzén, On the estimation of high quantiles, Journal of Statistical
Planning and Inference 35, 1-13, 1993.
-
[10] L. de Haan and U. Stadtmüller, Generalized regular variation of second order, Journal
of the Australian Mathematical Society (Series A) 61, 381-395, 1996.
-
[11] M. Eling and W. Schnell, What Do We Know About Cyber Risk and Cyber Risk
Insurance?, Journal of Risk Finance 21 (5), 471-492, 2020.
-
[12] J.H.J. Einmahl, A. Fils-Villetard and A. Guillou, Statistics of extremes under random
censoring, Bernoulli 14 (1), 207-227, 2008.
-
[13] P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance
and Finance, Applications of Mathematics (New York), 33. Springer-Verlag, Berlin,
1997.
-
[14] E. Furman and R. Zitikis, Weighted premium calculation principles, Insurance: Mathematics
and Economics 42, 459-465, 2008.
-
[15] E. Furman and R. Zitikis, Weighted risk capital allocations, Insurance: Mathematics
and Economics 43, 263-269, 2008.
-
[16] Y. Goegebeur, A. Guillou and J. Qin, Extreme value estimation of the conditional
risk premium in reinsurance, Insurance: Mathematics and Economics 96, 68-80, 2021.
-
[17] P. Hall, On some simple estimates of an exponent of regular variation, Journal of the
Royal Statistical Society, Series B 44, 37-42, 1982.
-
[18] B.M. Hill, A simple general approach to inference about the tail of a distribution,
Annals of Statistics 3 (5), 1163-1174, 1975.
-
[19] W. Hürlimann, On stop-loss order and the distortion pricing principle, ASTIN Bulletin
28, 119-134, 1998.
-
[20] E.L. Kaplan and P. Meier, Nonparametric estimation from incomplete observations,
Journal of the American Statistical Association 53, 457-481, 1958.
-
[21] A. Necir, D. Meraghni and F. Meddi, Statistical estimate of the proportional hazard
premium of loss, Scandinavian Actuarial Journal 2007 (3), 147-161, 2007.
-
[22] S.I. Resnick, Heavy-Tail Phenomena: Probabilistic and Statistical Modeling, Springer
Series in Operations Research and Financial Engineering. New York: Springer, 2007.
-
[23] R.D. Reiss and M. Thomas, Statistical Analysis of Extreme Values with Applications
to Insurance, Finance, Hydrology and Other Fields, Birkhäuser, Basel, 1997.
-
[24] W. Stute and J.-L. Wang, The strong law under random censorship, Annals of Statistics
21, 1591-1607, 1993.
-
[25] B. Vandewalle and J. Beirlant, On univariate extreme value statistics and the estimation
of reinsurance premiums, Insurance: Mathematics and Economics 38, 441-459,
2006.
-
[26] S.S. Wang, Insurance pricing and increased limits ratemaking by proportional hazards
transforms, Insurance: Mathematics and Economics 17, 43-54, 1995.
-
[27] S.S. Wang, A class of distortion operators for pricing financial and insurance risks,
Journal of Risk and Insurance 67, 15-36, 2000.
-
[28] J. Wirch and M. Hardy, A Synthesis of Risk Measures for Capital Adequacy, Insurance:
Mathematics and Economics 25, 337-347, 1999.