Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 4, 1501 - 1517, 29.08.2025
https://doi.org/10.15672/hujms.1608715

Abstract

References

  • [1] P. Artzner, F. Delbaen, J.M. Eber and D. Heath, Coherent measures of risk, Mathematical Finance 9, 203-228, 1999.
  • [2] J. Beirlant, G. Matthys, and G. Dierckx, Heavy-tailed distributions and rating, Astin Bulletin 31 (1), 37-58, 2001.
  • [3] J. Beirlant, A. Guillou, G. Dierckx and A. Fils-Viletard, Estimation of the extreme value index and extreme quantiles under random censoring, Extremes 10 (3), 151-174, 2007.
  • [4] B. Brahimi, D. Meraghni and A. Necir, Gaussian approximation to the extreme value index estimator of a heavy-tailed distribution under random censoring, Mathematical Methods of Statistics 24 (4), 266-279, 2015.
  • [5] B. Brahimi, D. Meraghni and A. Necir, Distortion risk measures for sums of dependent losses, African Statistics 5, 260-267, 2010.
  • [6] B. Brahimi, D. Meraghni, A. Necir and R. Zitikis, Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses, Insurance: Mathematics and Economics 49 (3), 325-334, 2011.
  • [7] M. Denuit, J. Dhaene, M. Goovaerts and R. Kaas, Actuarial Theory for Dependent Risks: Measures, Orders and Models, John Wiley & Sons, Ltd., 2005.
  • [8] L. de Haan and A. Ferreira, Extreme Value Theory: An Introduction, Springer, 2006.
  • [9] L. de Haan and H. Rootzén, On the estimation of high quantiles, Journal of Statistical Planning and Inference 35, 1-13, 1993.
  • [10] L. de Haan and U. Stadtmüller, Generalized regular variation of second order, Journal of the Australian Mathematical Society (Series A) 61, 381-395, 1996.
  • [11] M. Eling and W. Schnell, What Do We Know About Cyber Risk and Cyber Risk Insurance?, Journal of Risk Finance 21 (5), 471-492, 2020.
  • [12] J.H.J. Einmahl, A. Fils-Villetard and A. Guillou, Statistics of extremes under random censoring, Bernoulli 14 (1), 207-227, 2008.
  • [13] P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Applications of Mathematics (New York), 33. Springer-Verlag, Berlin, 1997.
  • [14] E. Furman and R. Zitikis, Weighted premium calculation principles, Insurance: Mathematics and Economics 42, 459-465, 2008.
  • [15] E. Furman and R. Zitikis, Weighted risk capital allocations, Insurance: Mathematics and Economics 43, 263-269, 2008.
  • [16] Y. Goegebeur, A. Guillou and J. Qin, Extreme value estimation of the conditional risk premium in reinsurance, Insurance: Mathematics and Economics 96, 68-80, 2021.
  • [17] P. Hall, On some simple estimates of an exponent of regular variation, Journal of the Royal Statistical Society, Series B 44, 37-42, 1982.
  • [18] B.M. Hill, A simple general approach to inference about the tail of a distribution, Annals of Statistics 3 (5), 1163-1174, 1975.
  • [19] W. Hürlimann, On stop-loss order and the distortion pricing principle, ASTIN Bulletin 28, 119-134, 1998.
  • [20] E.L. Kaplan and P. Meier, Nonparametric estimation from incomplete observations, Journal of the American Statistical Association 53, 457-481, 1958.
  • [21] A. Necir, D. Meraghni and F. Meddi, Statistical estimate of the proportional hazard premium of loss, Scandinavian Actuarial Journal 2007 (3), 147-161, 2007.
  • [22] S.I. Resnick, Heavy-Tail Phenomena: Probabilistic and Statistical Modeling, Springer Series in Operations Research and Financial Engineering. New York: Springer, 2007.
  • [23] R.D. Reiss and M. Thomas, Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields, Birkhäuser, Basel, 1997.
  • [24] W. Stute and J.-L. Wang, The strong law under random censorship, Annals of Statistics 21, 1591-1607, 1993.
  • [25] B. Vandewalle and J. Beirlant, On univariate extreme value statistics and the estimation of reinsurance premiums, Insurance: Mathematics and Economics 38, 441-459, 2006.
  • [26] S.S. Wang, Insurance pricing and increased limits ratemaking by proportional hazards transforms, Insurance: Mathematics and Economics 17, 43-54, 1995.
  • [27] S.S. Wang, A class of distortion operators for pricing financial and insurance risks, Journal of Risk and Insurance 67, 15-36, 2000.
  • [28] J. Wirch and M. Hardy, A Synthesis of Risk Measures for Capital Adequacy, Insurance: Mathematics and Economics 25, 337-347, 1999.

Estimation of distortion risk premiums in reinsurance under random right-censoring

Year 2025, Volume: 54 Issue: 4, 1501 - 1517, 29.08.2025
https://doi.org/10.15672/hujms.1608715

Abstract

This paper focuses on the estimation of distortion risk premiums for large reinsurance claims in the context of random right-censoring. We build an asymptotically normal estimator which is based on censored observations for Pareto-type distributions which represent heavy-tailed risks. The method combines semi-parametric extremes with extreme value theory to yield coherent premium estimates under the most challenging claim data scenarios. The provided simulations in conjunction with comprehensive censoring contexts and variances in tail heaviness illustrates the estimator's robustness and outperformance. Empirical assessment using Norwegian fire claims together with cybersecurity breach datasets adds to the proven value of the methodology. This work presents a robust approach to the estimation of risk at extreme values under censoring that directly impacts excess-of-loss reinsurance contracts and the solvency capital requirements defined by the risk decisions made by actuaries and managerial stakeholders.

Thanks

Please find enclosed my paper, co-authored by Brahimi brahim Entitled: “Estimation of Distortion Risk Premiums in reinsurance under random right-censoring”, which I submit for possible publication to Hacettepe Journal of Mathematics and Statistics Conflicts of Interest: The authors declare no conflicts of interest regarding the publication of this paper. Should you have any questions or require further information concerning this submission, please contact me at the address listed below. Best regards, Jihane Abdelli, PhD, Professor Laboratory of Applied Mathematics Mohamed Khider Universy of Biskra, PO Box 145 RP, Biskra, 07000, Algeria

References

  • [1] P. Artzner, F. Delbaen, J.M. Eber and D. Heath, Coherent measures of risk, Mathematical Finance 9, 203-228, 1999.
  • [2] J. Beirlant, G. Matthys, and G. Dierckx, Heavy-tailed distributions and rating, Astin Bulletin 31 (1), 37-58, 2001.
  • [3] J. Beirlant, A. Guillou, G. Dierckx and A. Fils-Viletard, Estimation of the extreme value index and extreme quantiles under random censoring, Extremes 10 (3), 151-174, 2007.
  • [4] B. Brahimi, D. Meraghni and A. Necir, Gaussian approximation to the extreme value index estimator of a heavy-tailed distribution under random censoring, Mathematical Methods of Statistics 24 (4), 266-279, 2015.
  • [5] B. Brahimi, D. Meraghni and A. Necir, Distortion risk measures for sums of dependent losses, African Statistics 5, 260-267, 2010.
  • [6] B. Brahimi, D. Meraghni, A. Necir and R. Zitikis, Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses, Insurance: Mathematics and Economics 49 (3), 325-334, 2011.
  • [7] M. Denuit, J. Dhaene, M. Goovaerts and R. Kaas, Actuarial Theory for Dependent Risks: Measures, Orders and Models, John Wiley & Sons, Ltd., 2005.
  • [8] L. de Haan and A. Ferreira, Extreme Value Theory: An Introduction, Springer, 2006.
  • [9] L. de Haan and H. Rootzén, On the estimation of high quantiles, Journal of Statistical Planning and Inference 35, 1-13, 1993.
  • [10] L. de Haan and U. Stadtmüller, Generalized regular variation of second order, Journal of the Australian Mathematical Society (Series A) 61, 381-395, 1996.
  • [11] M. Eling and W. Schnell, What Do We Know About Cyber Risk and Cyber Risk Insurance?, Journal of Risk Finance 21 (5), 471-492, 2020.
  • [12] J.H.J. Einmahl, A. Fils-Villetard and A. Guillou, Statistics of extremes under random censoring, Bernoulli 14 (1), 207-227, 2008.
  • [13] P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Applications of Mathematics (New York), 33. Springer-Verlag, Berlin, 1997.
  • [14] E. Furman and R. Zitikis, Weighted premium calculation principles, Insurance: Mathematics and Economics 42, 459-465, 2008.
  • [15] E. Furman and R. Zitikis, Weighted risk capital allocations, Insurance: Mathematics and Economics 43, 263-269, 2008.
  • [16] Y. Goegebeur, A. Guillou and J. Qin, Extreme value estimation of the conditional risk premium in reinsurance, Insurance: Mathematics and Economics 96, 68-80, 2021.
  • [17] P. Hall, On some simple estimates of an exponent of regular variation, Journal of the Royal Statistical Society, Series B 44, 37-42, 1982.
  • [18] B.M. Hill, A simple general approach to inference about the tail of a distribution, Annals of Statistics 3 (5), 1163-1174, 1975.
  • [19] W. Hürlimann, On stop-loss order and the distortion pricing principle, ASTIN Bulletin 28, 119-134, 1998.
  • [20] E.L. Kaplan and P. Meier, Nonparametric estimation from incomplete observations, Journal of the American Statistical Association 53, 457-481, 1958.
  • [21] A. Necir, D. Meraghni and F. Meddi, Statistical estimate of the proportional hazard premium of loss, Scandinavian Actuarial Journal 2007 (3), 147-161, 2007.
  • [22] S.I. Resnick, Heavy-Tail Phenomena: Probabilistic and Statistical Modeling, Springer Series in Operations Research and Financial Engineering. New York: Springer, 2007.
  • [23] R.D. Reiss and M. Thomas, Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields, Birkhäuser, Basel, 1997.
  • [24] W. Stute and J.-L. Wang, The strong law under random censorship, Annals of Statistics 21, 1591-1607, 1993.
  • [25] B. Vandewalle and J. Beirlant, On univariate extreme value statistics and the estimation of reinsurance premiums, Insurance: Mathematics and Economics 38, 441-459, 2006.
  • [26] S.S. Wang, Insurance pricing and increased limits ratemaking by proportional hazards transforms, Insurance: Mathematics and Economics 17, 43-54, 1995.
  • [27] S.S. Wang, A class of distortion operators for pricing financial and insurance risks, Journal of Risk and Insurance 67, 15-36, 2000.
  • [28] J. Wirch and M. Hardy, A Synthesis of Risk Measures for Capital Adequacy, Insurance: Mathematics and Economics 25, 337-347, 1999.
There are 28 citations in total.

Details

Primary Language English
Subjects Statistical Theory, Risk Analysis
Journal Section Statistics
Authors

Jihane Abdelli 0009-0007-3319-9828

Brahimi Brahim 0000-0003-4482-3749

Early Pub Date June 27, 2025
Publication Date August 29, 2025
Submission Date December 29, 2024
Acceptance Date June 4, 2025
Published in Issue Year 2025 Volume: 54 Issue: 4

Cite

APA Abdelli, J., & Brahim, B. (2025). Estimation of distortion risk premiums in reinsurance under random right-censoring. Hacettepe Journal of Mathematics and Statistics, 54(4), 1501-1517. https://doi.org/10.15672/hujms.1608715
AMA Abdelli J, Brahim B. Estimation of distortion risk premiums in reinsurance under random right-censoring. Hacettepe Journal of Mathematics and Statistics. August 2025;54(4):1501-1517. doi:10.15672/hujms.1608715
Chicago Abdelli, Jihane, and Brahimi Brahim. “Estimation of Distortion Risk Premiums in Reinsurance under Random Right-Censoring”. Hacettepe Journal of Mathematics and Statistics 54, no. 4 (August 2025): 1501-17. https://doi.org/10.15672/hujms.1608715.
EndNote Abdelli J, Brahim B (August 1, 2025) Estimation of distortion risk premiums in reinsurance under random right-censoring. Hacettepe Journal of Mathematics and Statistics 54 4 1501–1517.
IEEE J. Abdelli and B. Brahim, “Estimation of distortion risk premiums in reinsurance under random right-censoring”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, pp. 1501–1517, 2025, doi: 10.15672/hujms.1608715.
ISNAD Abdelli, Jihane - Brahim, Brahimi. “Estimation of Distortion Risk Premiums in Reinsurance under Random Right-Censoring”. Hacettepe Journal of Mathematics and Statistics 54/4 (August2025), 1501-1517. https://doi.org/10.15672/hujms.1608715.
JAMA Abdelli J, Brahim B. Estimation of distortion risk premiums in reinsurance under random right-censoring. Hacettepe Journal of Mathematics and Statistics. 2025;54:1501–1517.
MLA Abdelli, Jihane and Brahimi Brahim. “Estimation of Distortion Risk Premiums in Reinsurance under Random Right-Censoring”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, 2025, pp. 1501-17, doi:10.15672/hujms.1608715.
Vancouver Abdelli J, Brahim B. Estimation of distortion risk premiums in reinsurance under random right-censoring. Hacettepe Journal of Mathematics and Statistics. 2025;54(4):1501-17.