Effects of the Aronia Melanocarpa extract action on the activity of mitochondrial creatine kinase under immobilization stress in old rats
Year 2023,
Volume: 43 Issue: 4, 333 - 339, 01.12.2023
Volodymyr Shvets
,
Hanna Maslak
,
Vadim Davydov
,
Halyna Berest
,
Inna Nosulenko
,
Oleksii Voskoboinik
,
Liudmyla Omelianchyk
,
Oleksandr Brazhko
Abstract
The effects of the Aronia melanocarpa extract on mitochondrial creatine kinase isoenzyme of the old rats heart under stress were studied. The research was performed on 30 male rats of the Wistar line. For expiriment were used old (22–25 months) animals. It was established, that the injection of the extract (Aronia melanocarpa) at a dose of 0.2 g/kg 60 minutes before the immobilization has limited sensitivity of the heart muscle’s CPK-MT to damaging stress factors (reduced medium pH, increased medium tonicity, increased concentration of calcium, activated free radical processes), and helps the normalization of its kinetic properties, has an influence on the myocardium’s kinetic supply. Thus, the extract of Aronia melanocarpa increases the myocardial resistance to the injury effect of stress.
References
- 1. Song H, Fang F, Arnberg FK, Mataix-Cols D, Fernández de
la Cruz L, Almqvist C, et al. Stress related disorders and risk
of cardiovascular disease: population based, sibling controlled
cohort study. BMJ. 2019;365:l1255. https://doi.org/10.1136/
bmj.l1255
- 2. Steptoe A, Kivimäki M. Stress and cardiovascular disease. Nat
Rev Cardiol. 2012;9(6):360-70. https://doi.org/10.1038/nrcardio.
2012.45
- 3. Fujino Y, Tanabe N, Honjo K, Suzuki S, Shirai K, Iso H, et
al. A prospective cohort study of neighborhood stress and ischemic
heart disease in Japan: a multilevel analysis using the
JACC study data. BMC Public Health. 2011;11:398. https://
doi.org/10.1186/1471-2458-11-398
- 4. Davydov VV, Shvets VN. Adenine nucleotide and creatine
phosphate pool in adult and old rat heart during immobilization
stress. Gerontology. 2002;48(2):81-3. https://doi.
org/10.1159/000048931
- 5. Fedosov SN, Belousova LV. Vliianie oligomerizatsii na
svoĭstva sushchestvennykh dlia aktivnosti SH-grupp v
mitokhondrial’noĭ kreatinkinaze [Effect of oligomerization on
the properties of essential SH-groups of mitochondrial creatine
kinase]. Biokhimiia. 1988;53(4):550-64
- 6. Nagornaya NV, Chetverik NA, Fedorova АА. Energetic exchange
in cell in norm and patology. Possibility of it`s estimation.
Clinical Herontology. 2008;6:58.
- 7. Davydov VV, Shvets VN. Differential changes in the properties
of mitochondrial isoenzyme creatine kinase from heart of
adult and old rats during stress. Exp Gerontol. 1999;34(3):375-
8. https://doi.org/10.1016/s0531-5565(99)00020-0
- 8. Teneva D, Pencheva D, Petrova A, Ognyanov M, Georgiev Y,
Denev P. Addition of medicinal plants increases antioxidant
activity, color, and anthocyanin stability of black chokeberry
(Aronia melanocarpa) functional beverages. Plants (Basel).
2022;11(3):243. https://doi.org/10.3390/plants11030243
- 9. Meng L, Xin G, Li B, Li D, Sun X, Yan T, et al. Anthocyanins
extracted from Aronia melanocarpa protect SH-SY5Y cells
against Amyloid-beta (1-42)-induced apoptosis by regulating
Ca2+ homeostasis and inhibiting mitochondrial dysfunction.
J Agric Food Chem. 2018;66(49):12967-77. https://doi.
org/10.1021/acs.jafc.8b05404
- 10. Denev P, Číž M, Kratchanova M, Blazheva D. Black chokeberry
(Aronia melanocarpa) polyphenols reveal different antioxidant,
antimicrobial and neutrophil-modulating activities.
Food Chem. 2019;284:108-17. https://doi.org/10.1016/j.foodchem.
2019.01.108
- 11. Sidor A, Gramza-Michałowska A. Black chokeberry Aronia
melanocarpa L.-A qualitative composition, phenolic profile
and antioxidant potential. Molecules. 2019;24(20):3710.
https://doi.org/10.3390/molecules24203710
- 12. Jurikova T, Mlcek J, Skrovankova S, Sumczynski D, Sochor
J, Hlavacova I, et al. Fruits of black chokeberry Aronia melanocarpa
in the prevention of chronic diseases. Molecules.
2017;22(6):944. https://doi.org/10.3390/molecules22060944
- 13. Yang H, Kim YJ, Shin Y. Influence of ripening stage and cultivar
on physicochemical properties and antioxidant compositions
of Aronia grown in South Korea. Foods. 2019;8(12):598.
https://doi.org/10.3390/foods8120598
- 14. Bushmeleva K, Vyshtakalyuk A, Terenzhev D, Belov T, Parfenov
A, Sharonova N, et al. Radical scavenging actions and
immunomodulatory activity of Aronia melanocarpa propylene
glycol extracts. Plants (Basel). 2021 Nov 15;10(11):2458.
https://doi.org/10.3390/plants10112458
- 15. Krga I, Milenkovic D. Anthocyanins: From Sources and Bioavailability
to Cardiovascular-Health Benefits and Molecular
Mechanisms of Action. J Agric Food Chem. 2019;67(7):1771-
83. https://doi.org/10.1021/acs.jafc.8b06737
- 16. Cvetanović A, Zengin G, Zeković Z, Švarc-Gajić J, Ražić S,
Damjanović A, et al. Comparative in vitro studies of the biological
potential and chemical composition of stems, leaves
and berries Aronia melanocarpa’s extracts obtained by subcritical
water extraction. Food Chem Toxicol. 2018;121:458-66.
https://doi.org/10.1016/j.fct.2018.09.045
- 17. Staszowska-Karkut M, Materska M. Phenolic composition,
mineral content, and beneficial bioactivities of leaf extracts
from black currant (Ribes nigrum L.), raspberry (Rubus
idaeus), and aronia (Aronia melanocarpa). Nutrients.
2020;12(2):463. https://doi.org/10.3390/nu12020463
- 18. Vendrame S, Klimis-Zacas D. Potential factors influencing
the effects of anthocyanins on blood pressure regulation in
humans: A Review. Nutrients. 2019;11(6):1431. https://doi.
org/10.3390/nu11061431
- 19. Rudic J, Jakovljevic V, Jovic N, Nikolic M, Sretenovic J,
Mitrovic S, et al. Antioxidative effects of standardized Aronia
melanocarpa extract on reproductive and metabolic disturbances
in a rat model of polycystic ovary syndrome. Antioxidants
(Basel). 2022;11(6):1099. https://doi.org/10.3390/
antiox11061099
- 20. Cuvorova IN, Davydov VV, Prozorovskiĭ VN, Shvets VN.
[Peculiarity of the antioxidant action of the extract from Aronia
melanocarpa leaves antioxidant on the brain]. Biomed
Khim. 2005;51(1):66-71.
- 21. Kim SS, Shin Y. Antibacterial and in vitro antidementia effects
of aronia (Aronia melanocarpa) leaf extracts. Food Sci
Biotechnol. 2020;29(9):1295-1300. https://doi.org/10.1007/
s10068-020-00774-y
- 22. Deng H, Xue B, Wang M, Tong Y, Tan C, Wan M, et al.
TMT-based quantitative proteomics analyses reveal the antibacterial
mechanisms of anthocyanins from Aronia melanocarpa
against Escherichia coli O157:H7. J Agric Food
Chem. 2022;70(26):8032-8042. https://doi.org/10.1021/acs.
jafc.2c02742
- 23. Wei J, Yu W, Hao R, Fan J, Gao J. Anthocyanins from
Aronia melanocarpa induce apoptosis in Caco-2 cells
through Wnt/β-Catenin signaling pathway. Chem Biodivers.
2020;17(11):e2000654. https://doi.org/10.1002/
cbdv.202000654
- 24. Banach M, Wiloch M, Zawada K, Cyplik W, Kujawski W.
Evaluation of antioxidant and anti-inflammatory activity of
anthocyanin-rich water-soluble aronia dry extracts. Molecules.
2020;25(18):4055. https://doi.org/10.3390/molecules25184055
- 25. Ghosh M, Kim IS, Lee YM, Hong SM, Lee TH, Lim JH, Debnath
T, Lim BO. The effects of Aronia melanocarpa ‘Viking’
extracts in attenuating RANKL-induced osteoclastic differentiation
by inhibiting ROS generation and c-FOS/NFATc1 signaling.
Molecules. 2018;23(3):615. https://doi.org/10.3390/
molecules23030615
- 26. Olechno E, Puścion-Jakubik A, Zujko ME. Chokeberry (A.
melanocarpa (Michx.) Elliott)-A natural product for metabolic
disorders? Nutrients. 2022;14(13):2688. https://doi.
org/10.3390/nu14132688
- 27. Niesen S, Göttel C, Becker H, Bakuradze T, Winterhalter P,
Richling E. Fractionation of extracts from black chokeberry,
cranberry, and pomegranate to identify compounds that influence
lipid metabolism. Foods. 2022;11(4):570. https://doi.
org/10.3390/foods11040570
- 28. Middleton E Jr, Kandaswami C, Theoharides TC. The effects
of plant flavonoids on mammalian cells: implications
for inflammation, heart disease, and cancer. Pharmacol Rev.
2000;52(4):673-751.
- 29. Shvets V, Maslak H, Davydov V, Berest H, Nosulenko I. The
effect of Aronia melanocarpa extract on the phospholipid
composition of the rat myocardium during stress. Ceska Slov
Farm. 2022;71(3):98-102.
- 30. Romano AD, Serviddio G, de Matthaeis A, Bellanti F, Vendemiale
G. Oxidative stress and aging. J Nephrol. 2010;Suppl
15:S29-36.
- 31. Saner H. Stress als kardiovaskulärer Risikofaktor [Stress as a
cardiovascular risk factor]. Ther Umsch. 2005;62(9):597-602.
German. https://doi.org/10.1024/0040-5930.62.9.597.
- 32. Gavrysh OS, Shults NV, Kindzerska OL, Dorofeeva SI.
Energetic supply of miocard at chronic heart failure of noncoronary
genesis. Ukraine Cardiological Journal. 2011;3:44-9.
- 33. Meerson FZ. Pathogenesis and prevention of stress and ischemic
heart lesion. Medicine. 1984;270.
- 34. Saks V, Dzeja P, Schlattner U. Cardiac system bioenergetics:
metabolic basis of the Frank-Starling law. J Physiol.
2006;571(Pt 2):253-73.
- 35. De Moor P, Steeno O, Raskin M, Hendrikx A. Fluorimetric determination
of free plasma 11-hydroxycorticosteroids in man.
Acta Endocrinol. 1960;33:297–307.
- 36. European convention for the protection of vertebrate animals
used for experimental and other scientific purposes. European
Treaty Series 1986, No. 123. Strasbourg: Council of Europe.
- 37. Lowry O, Rosebrough N, Randall R, Farr A. Protein measurement
with the folin phenol reagent. J Biol Chem.
1951;193:265–75.
- 38. Frolkis VV. The stress-age syndrome. Phisiologicheskii Juornal.
1991;37:3–11.
- 39. Shvets VN. Age-specific peculiarities of the accumulation of
carbonylated proteins in subcellular fraction of myocardium
under immobilization stress influence, Uchenye zapiski Tavricheskogo
Natsionalnogo Universiteta im. V.I. Vernadskogo.
Series “Biology, chemistry”. 2008;21(1):169-73.
- 40. Cadenas E. Mitochondrial free radical generation, oxidative
stress, and aging. Free Radic. Biol Med. 2000;29(3):222-30.
- 41. Faff J, Frankiewicz-Jozko A. Effect of anthocyanin pigments
from fruits of Aronia melanocarpa on the exercise-induced
increase in lipid peroxidation marker in rat tissues. Biology of
Sport. 2003;20:15-23.
Effects of the Aronia Melanocarpa extract action on the activity of mitochondrial creatine kinase under immobilization stress in old rats
Year 2023,
Volume: 43 Issue: 4, 333 - 339, 01.12.2023
Volodymyr Shvets
,
Hanna Maslak
,
Vadim Davydov
,
Halyna Berest
,
Inna Nosulenko
,
Oleksii Voskoboinik
,
Liudmyla Omelianchyk
,
Oleksandr Brazhko
Abstract
The effects of the Aronia melanocarpa extract on mitochondrial creatine kinase isoenzyme of the old rats heart under stress were studied. The research was performed on 30 male rats of the Wistar line. For expiriment were used old (22–25 months) animals. It was established, that the injection of the extract (Aronia melanocarpa) at a dose of 0.2 g/kg 60 minutes before the immobilization has limited sensitivity of the heart muscle’s CPK-MT to damaging stress factors (reduced medium pH, increased medium tonicity, increased concentration of calcium, activated free radical processes), and helps the normalization of its kinetic properties, has an influence on the myocardium’s kinetic supply. Thus, the extract of Aronia melanocarpa increases the myocardial resistance to the injury effect of stress.
References
- 1. Song H, Fang F, Arnberg FK, Mataix-Cols D, Fernández de
la Cruz L, Almqvist C, et al. Stress related disorders and risk
of cardiovascular disease: population based, sibling controlled
cohort study. BMJ. 2019;365:l1255. https://doi.org/10.1136/
bmj.l1255
- 2. Steptoe A, Kivimäki M. Stress and cardiovascular disease. Nat
Rev Cardiol. 2012;9(6):360-70. https://doi.org/10.1038/nrcardio.
2012.45
- 3. Fujino Y, Tanabe N, Honjo K, Suzuki S, Shirai K, Iso H, et
al. A prospective cohort study of neighborhood stress and ischemic
heart disease in Japan: a multilevel analysis using the
JACC study data. BMC Public Health. 2011;11:398. https://
doi.org/10.1186/1471-2458-11-398
- 4. Davydov VV, Shvets VN. Adenine nucleotide and creatine
phosphate pool in adult and old rat heart during immobilization
stress. Gerontology. 2002;48(2):81-3. https://doi.
org/10.1159/000048931
- 5. Fedosov SN, Belousova LV. Vliianie oligomerizatsii na
svoĭstva sushchestvennykh dlia aktivnosti SH-grupp v
mitokhondrial’noĭ kreatinkinaze [Effect of oligomerization on
the properties of essential SH-groups of mitochondrial creatine
kinase]. Biokhimiia. 1988;53(4):550-64
- 6. Nagornaya NV, Chetverik NA, Fedorova АА. Energetic exchange
in cell in norm and patology. Possibility of it`s estimation.
Clinical Herontology. 2008;6:58.
- 7. Davydov VV, Shvets VN. Differential changes in the properties
of mitochondrial isoenzyme creatine kinase from heart of
adult and old rats during stress. Exp Gerontol. 1999;34(3):375-
8. https://doi.org/10.1016/s0531-5565(99)00020-0
- 8. Teneva D, Pencheva D, Petrova A, Ognyanov M, Georgiev Y,
Denev P. Addition of medicinal plants increases antioxidant
activity, color, and anthocyanin stability of black chokeberry
(Aronia melanocarpa) functional beverages. Plants (Basel).
2022;11(3):243. https://doi.org/10.3390/plants11030243
- 9. Meng L, Xin G, Li B, Li D, Sun X, Yan T, et al. Anthocyanins
extracted from Aronia melanocarpa protect SH-SY5Y cells
against Amyloid-beta (1-42)-induced apoptosis by regulating
Ca2+ homeostasis and inhibiting mitochondrial dysfunction.
J Agric Food Chem. 2018;66(49):12967-77. https://doi.
org/10.1021/acs.jafc.8b05404
- 10. Denev P, Číž M, Kratchanova M, Blazheva D. Black chokeberry
(Aronia melanocarpa) polyphenols reveal different antioxidant,
antimicrobial and neutrophil-modulating activities.
Food Chem. 2019;284:108-17. https://doi.org/10.1016/j.foodchem.
2019.01.108
- 11. Sidor A, Gramza-Michałowska A. Black chokeberry Aronia
melanocarpa L.-A qualitative composition, phenolic profile
and antioxidant potential. Molecules. 2019;24(20):3710.
https://doi.org/10.3390/molecules24203710
- 12. Jurikova T, Mlcek J, Skrovankova S, Sumczynski D, Sochor
J, Hlavacova I, et al. Fruits of black chokeberry Aronia melanocarpa
in the prevention of chronic diseases. Molecules.
2017;22(6):944. https://doi.org/10.3390/molecules22060944
- 13. Yang H, Kim YJ, Shin Y. Influence of ripening stage and cultivar
on physicochemical properties and antioxidant compositions
of Aronia grown in South Korea. Foods. 2019;8(12):598.
https://doi.org/10.3390/foods8120598
- 14. Bushmeleva K, Vyshtakalyuk A, Terenzhev D, Belov T, Parfenov
A, Sharonova N, et al. Radical scavenging actions and
immunomodulatory activity of Aronia melanocarpa propylene
glycol extracts. Plants (Basel). 2021 Nov 15;10(11):2458.
https://doi.org/10.3390/plants10112458
- 15. Krga I, Milenkovic D. Anthocyanins: From Sources and Bioavailability
to Cardiovascular-Health Benefits and Molecular
Mechanisms of Action. J Agric Food Chem. 2019;67(7):1771-
83. https://doi.org/10.1021/acs.jafc.8b06737
- 16. Cvetanović A, Zengin G, Zeković Z, Švarc-Gajić J, Ražić S,
Damjanović A, et al. Comparative in vitro studies of the biological
potential and chemical composition of stems, leaves
and berries Aronia melanocarpa’s extracts obtained by subcritical
water extraction. Food Chem Toxicol. 2018;121:458-66.
https://doi.org/10.1016/j.fct.2018.09.045
- 17. Staszowska-Karkut M, Materska M. Phenolic composition,
mineral content, and beneficial bioactivities of leaf extracts
from black currant (Ribes nigrum L.), raspberry (Rubus
idaeus), and aronia (Aronia melanocarpa). Nutrients.
2020;12(2):463. https://doi.org/10.3390/nu12020463
- 18. Vendrame S, Klimis-Zacas D. Potential factors influencing
the effects of anthocyanins on blood pressure regulation in
humans: A Review. Nutrients. 2019;11(6):1431. https://doi.
org/10.3390/nu11061431
- 19. Rudic J, Jakovljevic V, Jovic N, Nikolic M, Sretenovic J,
Mitrovic S, et al. Antioxidative effects of standardized Aronia
melanocarpa extract on reproductive and metabolic disturbances
in a rat model of polycystic ovary syndrome. Antioxidants
(Basel). 2022;11(6):1099. https://doi.org/10.3390/
antiox11061099
- 20. Cuvorova IN, Davydov VV, Prozorovskiĭ VN, Shvets VN.
[Peculiarity of the antioxidant action of the extract from Aronia
melanocarpa leaves antioxidant on the brain]. Biomed
Khim. 2005;51(1):66-71.
- 21. Kim SS, Shin Y. Antibacterial and in vitro antidementia effects
of aronia (Aronia melanocarpa) leaf extracts. Food Sci
Biotechnol. 2020;29(9):1295-1300. https://doi.org/10.1007/
s10068-020-00774-y
- 22. Deng H, Xue B, Wang M, Tong Y, Tan C, Wan M, et al.
TMT-based quantitative proteomics analyses reveal the antibacterial
mechanisms of anthocyanins from Aronia melanocarpa
against Escherichia coli O157:H7. J Agric Food
Chem. 2022;70(26):8032-8042. https://doi.org/10.1021/acs.
jafc.2c02742
- 23. Wei J, Yu W, Hao R, Fan J, Gao J. Anthocyanins from
Aronia melanocarpa induce apoptosis in Caco-2 cells
through Wnt/β-Catenin signaling pathway. Chem Biodivers.
2020;17(11):e2000654. https://doi.org/10.1002/
cbdv.202000654
- 24. Banach M, Wiloch M, Zawada K, Cyplik W, Kujawski W.
Evaluation of antioxidant and anti-inflammatory activity of
anthocyanin-rich water-soluble aronia dry extracts. Molecules.
2020;25(18):4055. https://doi.org/10.3390/molecules25184055
- 25. Ghosh M, Kim IS, Lee YM, Hong SM, Lee TH, Lim JH, Debnath
T, Lim BO. The effects of Aronia melanocarpa ‘Viking’
extracts in attenuating RANKL-induced osteoclastic differentiation
by inhibiting ROS generation and c-FOS/NFATc1 signaling.
Molecules. 2018;23(3):615. https://doi.org/10.3390/
molecules23030615
- 26. Olechno E, Puścion-Jakubik A, Zujko ME. Chokeberry (A.
melanocarpa (Michx.) Elliott)-A natural product for metabolic
disorders? Nutrients. 2022;14(13):2688. https://doi.
org/10.3390/nu14132688
- 27. Niesen S, Göttel C, Becker H, Bakuradze T, Winterhalter P,
Richling E. Fractionation of extracts from black chokeberry,
cranberry, and pomegranate to identify compounds that influence
lipid metabolism. Foods. 2022;11(4):570. https://doi.
org/10.3390/foods11040570
- 28. Middleton E Jr, Kandaswami C, Theoharides TC. The effects
of plant flavonoids on mammalian cells: implications
for inflammation, heart disease, and cancer. Pharmacol Rev.
2000;52(4):673-751.
- 29. Shvets V, Maslak H, Davydov V, Berest H, Nosulenko I. The
effect of Aronia melanocarpa extract on the phospholipid
composition of the rat myocardium during stress. Ceska Slov
Farm. 2022;71(3):98-102.
- 30. Romano AD, Serviddio G, de Matthaeis A, Bellanti F, Vendemiale
G. Oxidative stress and aging. J Nephrol. 2010;Suppl
15:S29-36.
- 31. Saner H. Stress als kardiovaskulärer Risikofaktor [Stress as a
cardiovascular risk factor]. Ther Umsch. 2005;62(9):597-602.
German. https://doi.org/10.1024/0040-5930.62.9.597.
- 32. Gavrysh OS, Shults NV, Kindzerska OL, Dorofeeva SI.
Energetic supply of miocard at chronic heart failure of noncoronary
genesis. Ukraine Cardiological Journal. 2011;3:44-9.
- 33. Meerson FZ. Pathogenesis and prevention of stress and ischemic
heart lesion. Medicine. 1984;270.
- 34. Saks V, Dzeja P, Schlattner U. Cardiac system bioenergetics:
metabolic basis of the Frank-Starling law. J Physiol.
2006;571(Pt 2):253-73.
- 35. De Moor P, Steeno O, Raskin M, Hendrikx A. Fluorimetric determination
of free plasma 11-hydroxycorticosteroids in man.
Acta Endocrinol. 1960;33:297–307.
- 36. European convention for the protection of vertebrate animals
used for experimental and other scientific purposes. European
Treaty Series 1986, No. 123. Strasbourg: Council of Europe.
- 37. Lowry O, Rosebrough N, Randall R, Farr A. Protein measurement
with the folin phenol reagent. J Biol Chem.
1951;193:265–75.
- 38. Frolkis VV. The stress-age syndrome. Phisiologicheskii Juornal.
1991;37:3–11.
- 39. Shvets VN. Age-specific peculiarities of the accumulation of
carbonylated proteins in subcellular fraction of myocardium
under immobilization stress influence, Uchenye zapiski Tavricheskogo
Natsionalnogo Universiteta im. V.I. Vernadskogo.
Series “Biology, chemistry”. 2008;21(1):169-73.
- 40. Cadenas E. Mitochondrial free radical generation, oxidative
stress, and aging. Free Radic. Biol Med. 2000;29(3):222-30.
- 41. Faff J, Frankiewicz-Jozko A. Effect of anthocyanin pigments
from fruits of Aronia melanocarpa on the exercise-induced
increase in lipid peroxidation marker in rat tissues. Biology of
Sport. 2003;20:15-23.