Endüstriyel Üretimde Polipropilen Meltblown Kumaşların Filtreleme Performansının Geliştirilmesi
Year 2021,
Volume: 6 Issue: 1, 28 - 38, 30.04.2021
Utkay Dönmez
,
Hacı Kurt
,
Murathan Sevim
,
Akif Sütsatar
Abstract
Meltblown teknolojisi ile üretilen kumaşlar medikalden filtre ürünlere, akustik izolasyondan kompozit bileşenlere kadar birçok amaç için kullanılmaktadır. Mikro seviyede lif üretimi ile sıvı ve hava filtreleme sistemlerinde tercih edilen meltblown kumaşların tercih edilebilirliği her geçen gün artmaktadır. Teknolojinin ilerlemesi ve kullanılan hammadde ve katkı maddeleri ile birlikte daha ince lifler üretilebilmektedir. Genellikle meltblown kumaşların lif çapı değerleri 2-4 mikron (μm) aralığında olup, bu ürünlerin filtre verimlilikleri %20-%30 aralığında değişmektedir. Bu çalışmada, meltblown proses parametrelerinin optimize edilmesi, girdilerin değiştirilmesi ve elektrostatik yükleme gibi işlemler ile üretilmiş 30 gsm meltblown kumaşların filtre verimlilikleri test edilerek en iyi değer elde edilmeye çalışılmıştır. Elde edilen veriler ile üretilen meltblown kumaşların tıbbi maskeler ve partikül tutucu toz maskelerde kullanılabilirlikleri ortaya konmuştur.
Supporting Institution
Teknomelt Arge Merkezi/Sanayi ve Teknoloji Bakanlığı-Arge Teşvikleri Genel Müdürlüğü
Thanks
Teknomelt çalışanlarına ile Sanayi ve Teknoloji Bakanlığı'na teşekkür ederiz.
References
- [1] Zhang, S., Shim, W.S., & Kim, J. Design of ultra-fine nonwovens via electrospinning of Nylon 6: Spinning parameters and filtration efficiency. Materials & Design, 30(9), (3659-3666), (2009). doi: 10.1016/j.matdes.2009.02.017
- [2] Uppal R., Bhat G., Eash C. ve Akato K. Meltblown nanofiber media for enhanced quality factor. Fibers and Polymers, 14(660-668), (2013). doi: 10.1007/s12221-013-0660-z
- [3] Zhou, S.S., Lukula, S., Chiossone, C., Nims, R.W., Suchmann, D.B., & Ijaz, M.K. Assessment of a respiratory face mask for capturing air pollutants and pathogens including human influenza and rhinoviruses. Journal of Thoracic Disease, 10(3), (2059), (2018). doi: 10.21037/jtd.2018.03.103
- [4] Kaur, S., Gopal, R., Ng, W. J., Ramakrishna, S., & Matsuura, T. Next-generation fibrous media for water treatment. Mrs Bulletin, 33(1), (21-26), (2008). Doi: 10.1557/mrs2008.10
- [5] Subbiah T., Bhat G.S., Tock R.W., Parameswaran S., Ramkumar S.S. Electrospinning of Nanofibers. Journal of Applied Polymer Science, 96, (557-569), (2005). doi: 10.1002/app.21481
- [6] Dönmez, U., Kurt H.A., Atici A. Nonwoven Kumaşların Kalender Yöntemiyle Birleştirilmesinde Kalender Sıcaklığı Ve Kumaş Katman Sayısının Kumaş Performansına Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarim Ve Teknoloji, 7(3), 765-775, (2019).
- [7] Mukhopadhyay, S. Microfibres- an overview. Indian Journal of Fibres & Textile Research, 27,(307-314), (2002).
- [8] Russell S.J., (2007). Handbook of nonwovens. (1st Edtn). CRC Press. Woodhead Publications, Cambridge, England.
- [9] Hegde R.R., Bhat G.S., Nanoparticle effects on structure and properties of polypropylene meltblown webs. Journal of Applied Polymer Science, 115(1062-1072), (2010). doi: 10.1002/app.31089
- [10] Demiröz Gün, A., Demircan, B. ve Şevkan, A., Mikroliflerin üretim yöntemleri, özellikleri ve kullanım alanları. Tekstil ve Mühendis, 18(83), (38-46), (2011).
- [11] Duran, D., Duran, K., Meltblown Nonwovens: Effect of production parameters on physical properties, 14th National & 1st International Textile Technology and Chemistry Symposium, May 8-10 2013, Bursa, ISBN:978-605-63112-2-2, (2013).
- [12] Zhang, D., Sun, C., Beard, J., Brown, H., Carson, I., ve Hwo, C., Development and characterization of poly (trimethylene terephthalate)‐based bicomponent meltblown nonwovens. Journal of Applied Polymer Science, 83(6), (1280-1287), (2002). doi: 10.1002/app.2295
- [13] Dutton, K.C., Overview and analysis of the meltblown process and parameters. Journal of Textile and Apparel, Technology and Management (JTATM), Fall 2008. 6(1), (1-24), (2008).
- [14] Duran, D., Perincek, S. The Effect of various production parameters on the physical properties of polypropylene meltblown nonwovens. Industria Textila, 61(3), (117-123), (2010).
- [15] Doğan, G. (2006). Kuru Hava Filtrasyonunda Kullanılan Dokusuz Yüzeylerin Performansları Üzerine Bir Çalışma, Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü.
- [16] Kaynak, K.H., Değirmenci, Z. Teknik tekstil uygulamalarında kullanılan nonwoven filtreler. Tekstil Teknolojileri Elektronik Dergisi, 4(2), (78-84), (2010).
- [17] Duran K., Duran D., Oymak G., Kılıç K., Öncü E., Kara M. Investigation of the physical properties of meltblown nonwovens for air filtration. Tekstil Ve Konfeksiyon, 23(2), 2013.
- [18] Yesil, Y. and Bhat, G.S. Porosity and barrier properties of polyethylene meltblown nonwovens. The Journal of The Textile Institute, 108(6), (1035-1040), (2017). doi: 10.1080/00405000.2016.1218109
- [19] Gosch, M.E., Shaffer, R.E., Eagan, A.E., Roberge, R.J., Davey, V.J., & Radonovich Jr, L.J. B95: A new respirator for health care personnel. American Journal Of Infection Control, 41(12), (1224-1230), (2013). doi:10.1016/j.ajic.2013.03.293
- [20] Podgorski, A., Bałazy, A., & Gradoń, L. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chemical Engineering Science, 61(20), (6804-6815), (2006). doi: 10.1016/j.ces.2006.07.022
- [21] Skaria, S.D., & Smaldone, G.C. Respiratory source control using surgical masks with nanofiber media. Annals Of Occupational Hygiene, 58(6), (771-781), (2014). doi: 10.1093/annhyg/meu023
- [22] Gralton, J., & McLaws, M.L. Protecting healthcare workers from pandemic influenza: N95 or surgical masks?. Critical Care Medicine, 38(2), (657-667), (2010). doi: 10.1097/CCM.0b013e3181b9e8b3
- [23] Pathak, V. (2016). Respirators for protection against PM2.5, 3M Personal Safety Division. https://multimedia.3m.com/mws/media/1313143O/respirators-for-protection-agains.pdf
- [24] Akduman, C., & Kumbasar, E.A. Nanofibers in face masks and respirators to provide better protection. In IOP Conference Series: Materials Science and Engineering, 460(1), (012013), (2018). doi:10.1088/1757-899X/460/1/012013
- [25] Wen, Z., Yu, L., Yang, W., Hu, L., Li, N., Wang, J., Li J., Lu, J., Dong X., Yin Z., & Zhang, K., Assessment the protection performance of different level personal respiratory protection masks against viral aerosol. Aerobiologia, 29(3), (365-372), (2013). doi: 10.1007/s10453-012-9286-7
- [26] Shimasaki, N., Okaue, A., Kikuno, R., & Shinohara, K. Comparison of the filter efficiency of medical nonwoven fabrics against three different microbe aerosols. Biocontrol Science, 23(2), (61-69), (2018). doi: 10.4265/bio.23.61
- [27] Rengasamy, A., Zhuang Z. & Berry Ann, R. Respiratory protection against bioaerosols: literature review and research needs, Am. J. Infect. Control, 32(6), (345-354), (2004). doi: 10.1016/j.ajic.2004.04.199
- [28] Balazy, A., Toivola, M., Adhikari, A., Sivasubramani, S.K., Reponen, T., Grinshpun, S.A. Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks? Am. J. Infect. Control, 34(2), (51-57), (2006). doi: /10.1016/j.ajic.2005.08.018
- [29] Mao, N. (2016). Methods for characterisation of nonwoven structure, property, and performance, Advances In Technical Nonwovens, ed G Kellie (Amsterdam: Elsevier), ch. 6.
Improving the Filtering Performance of Polypropylene Meltblown Fabrics in Industrial Production
Year 2021,
Volume: 6 Issue: 1, 28 - 38, 30.04.2021
Utkay Dönmez
,
Hacı Kurt
,
Murathan Sevim
,
Akif Sütsatar
Abstract
Fabrics produced with Meltblown technology are used for many purposes, from medical to filter products, from acoustic insulation to composite components. The preferability of meltblown fabrics preferred in liquid and air filtering systems with micro fiber production is increasing day by day. Thinner fibers can be produced with the advancement of technology, raw materials and additives used. Generally, the fiber diameter values of meltblown fabrics are in the range of 2-4 microns, and their filter efficiency varies between 20% and 30%. In this study, the filter efficiencies of 30 gsm meltblown fabrics produced by processes such as optimizing meltblown process parameters, changing inputs and electro loading are tried to be obtained by testing. The usability of meltblown fabrics produced with the obtained data has been demonstrated in medical masks and dust masks.
References
- [1] Zhang, S., Shim, W.S., & Kim, J. Design of ultra-fine nonwovens via electrospinning of Nylon 6: Spinning parameters and filtration efficiency. Materials & Design, 30(9), (3659-3666), (2009). doi: 10.1016/j.matdes.2009.02.017
- [2] Uppal R., Bhat G., Eash C. ve Akato K. Meltblown nanofiber media for enhanced quality factor. Fibers and Polymers, 14(660-668), (2013). doi: 10.1007/s12221-013-0660-z
- [3] Zhou, S.S., Lukula, S., Chiossone, C., Nims, R.W., Suchmann, D.B., & Ijaz, M.K. Assessment of a respiratory face mask for capturing air pollutants and pathogens including human influenza and rhinoviruses. Journal of Thoracic Disease, 10(3), (2059), (2018). doi: 10.21037/jtd.2018.03.103
- [4] Kaur, S., Gopal, R., Ng, W. J., Ramakrishna, S., & Matsuura, T. Next-generation fibrous media for water treatment. Mrs Bulletin, 33(1), (21-26), (2008). Doi: 10.1557/mrs2008.10
- [5] Subbiah T., Bhat G.S., Tock R.W., Parameswaran S., Ramkumar S.S. Electrospinning of Nanofibers. Journal of Applied Polymer Science, 96, (557-569), (2005). doi: 10.1002/app.21481
- [6] Dönmez, U., Kurt H.A., Atici A. Nonwoven Kumaşların Kalender Yöntemiyle Birleştirilmesinde Kalender Sıcaklığı Ve Kumaş Katman Sayısının Kumaş Performansına Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarim Ve Teknoloji, 7(3), 765-775, (2019).
- [7] Mukhopadhyay, S. Microfibres- an overview. Indian Journal of Fibres & Textile Research, 27,(307-314), (2002).
- [8] Russell S.J., (2007). Handbook of nonwovens. (1st Edtn). CRC Press. Woodhead Publications, Cambridge, England.
- [9] Hegde R.R., Bhat G.S., Nanoparticle effects on structure and properties of polypropylene meltblown webs. Journal of Applied Polymer Science, 115(1062-1072), (2010). doi: 10.1002/app.31089
- [10] Demiröz Gün, A., Demircan, B. ve Şevkan, A., Mikroliflerin üretim yöntemleri, özellikleri ve kullanım alanları. Tekstil ve Mühendis, 18(83), (38-46), (2011).
- [11] Duran, D., Duran, K., Meltblown Nonwovens: Effect of production parameters on physical properties, 14th National & 1st International Textile Technology and Chemistry Symposium, May 8-10 2013, Bursa, ISBN:978-605-63112-2-2, (2013).
- [12] Zhang, D., Sun, C., Beard, J., Brown, H., Carson, I., ve Hwo, C., Development and characterization of poly (trimethylene terephthalate)‐based bicomponent meltblown nonwovens. Journal of Applied Polymer Science, 83(6), (1280-1287), (2002). doi: 10.1002/app.2295
- [13] Dutton, K.C., Overview and analysis of the meltblown process and parameters. Journal of Textile and Apparel, Technology and Management (JTATM), Fall 2008. 6(1), (1-24), (2008).
- [14] Duran, D., Perincek, S. The Effect of various production parameters on the physical properties of polypropylene meltblown nonwovens. Industria Textila, 61(3), (117-123), (2010).
- [15] Doğan, G. (2006). Kuru Hava Filtrasyonunda Kullanılan Dokusuz Yüzeylerin Performansları Üzerine Bir Çalışma, Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü.
- [16] Kaynak, K.H., Değirmenci, Z. Teknik tekstil uygulamalarında kullanılan nonwoven filtreler. Tekstil Teknolojileri Elektronik Dergisi, 4(2), (78-84), (2010).
- [17] Duran K., Duran D., Oymak G., Kılıç K., Öncü E., Kara M. Investigation of the physical properties of meltblown nonwovens for air filtration. Tekstil Ve Konfeksiyon, 23(2), 2013.
- [18] Yesil, Y. and Bhat, G.S. Porosity and barrier properties of polyethylene meltblown nonwovens. The Journal of The Textile Institute, 108(6), (1035-1040), (2017). doi: 10.1080/00405000.2016.1218109
- [19] Gosch, M.E., Shaffer, R.E., Eagan, A.E., Roberge, R.J., Davey, V.J., & Radonovich Jr, L.J. B95: A new respirator for health care personnel. American Journal Of Infection Control, 41(12), (1224-1230), (2013). doi:10.1016/j.ajic.2013.03.293
- [20] Podgorski, A., Bałazy, A., & Gradoń, L. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chemical Engineering Science, 61(20), (6804-6815), (2006). doi: 10.1016/j.ces.2006.07.022
- [21] Skaria, S.D., & Smaldone, G.C. Respiratory source control using surgical masks with nanofiber media. Annals Of Occupational Hygiene, 58(6), (771-781), (2014). doi: 10.1093/annhyg/meu023
- [22] Gralton, J., & McLaws, M.L. Protecting healthcare workers from pandemic influenza: N95 or surgical masks?. Critical Care Medicine, 38(2), (657-667), (2010). doi: 10.1097/CCM.0b013e3181b9e8b3
- [23] Pathak, V. (2016). Respirators for protection against PM2.5, 3M Personal Safety Division. https://multimedia.3m.com/mws/media/1313143O/respirators-for-protection-agains.pdf
- [24] Akduman, C., & Kumbasar, E.A. Nanofibers in face masks and respirators to provide better protection. In IOP Conference Series: Materials Science and Engineering, 460(1), (012013), (2018). doi:10.1088/1757-899X/460/1/012013
- [25] Wen, Z., Yu, L., Yang, W., Hu, L., Li, N., Wang, J., Li J., Lu, J., Dong X., Yin Z., & Zhang, K., Assessment the protection performance of different level personal respiratory protection masks against viral aerosol. Aerobiologia, 29(3), (365-372), (2013). doi: 10.1007/s10453-012-9286-7
- [26] Shimasaki, N., Okaue, A., Kikuno, R., & Shinohara, K. Comparison of the filter efficiency of medical nonwoven fabrics against three different microbe aerosols. Biocontrol Science, 23(2), (61-69), (2018). doi: 10.4265/bio.23.61
- [27] Rengasamy, A., Zhuang Z. & Berry Ann, R. Respiratory protection against bioaerosols: literature review and research needs, Am. J. Infect. Control, 32(6), (345-354), (2004). doi: 10.1016/j.ajic.2004.04.199
- [28] Balazy, A., Toivola, M., Adhikari, A., Sivasubramani, S.K., Reponen, T., Grinshpun, S.A. Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks? Am. J. Infect. Control, 34(2), (51-57), (2006). doi: /10.1016/j.ajic.2005.08.018
- [29] Mao, N. (2016). Methods for characterisation of nonwoven structure, property, and performance, Advances In Technical Nonwovens, ed G Kellie (Amsterdam: Elsevier), ch. 6.