Research Article
BibTex RIS Cite

Soil Moisture Sensor Powered by Solar Panel and Super Capacitor

Year 2023, Volume: 8 Issue: 1, 1 - 8, 28.04.2023
https://doi.org/10.46578/humder.1210812

Abstract

With the increase in IoT applications, smart agriculture applications have become widespread. In order to make physical measurements such as humidity and temperature in agricultural areas (rechargeable or non-rechargeable) battery-powered smart sensors are used. However, these battery-powered sensors require periodic battery replacement or charging, resulting in low operating life, additional maintenance and cost. This study aims to solve these problems by proposing a unique electrical supply source for smart sensors. In this article, a soil moisture sensor for agricultural use, which does not require a battery, has been developed by using a super capacitor charged with a solar panel. After this sensor is installed in the field, it does not require periodic maintenance for reasons such as charging or battery replacement. The sensor periodically transmits humidity information to the base station via its wireless module.

References

  • A. R. Al-Ali, A. Al-Nabulsi, S. Mukhopadhyay, M. S. Awal, S. Fernandes, K. Ailabouni, IoT-solar energy powered smart farm irrigation system. Journal of Electronic Science and Technology, Volume 17, Issue 4, 2019
  • T. S. Chaithra, N. Ajay - Smart farm monitoring system using solar-power and Internet of Things devices. International Research Journal of Modernization in Engineering Technology and Science, Volume 02, Issue 07 July 2020.
  • A. C. Tagarakis, D. Kateris, R. Berruto, D. Bochtis, Low-Cost Wireless Sensing System for Precision Agriculture Applications in Orchards. Appl. Sci. 2021, 11, 5858.
  • S. Sadowski, P. Spachos, Solar-Powered Smart Agricultural Monitoring System Using Internet of Things Devices. 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2018, pp. 18-23, doi: 10.1109/IEMCON.2018.8614981.
  • M. Gowda, J. Gowda, S. Iyer, M. Pawar, V. Gaikwad, Power Consumption Optimization in IoT based Wireless Sensor Node Using ESP8266. ITM Web Conf. 32 03048, 2020.
  • M. M. Sandhu, K. Geissdoerfer, S. Khalifa, R. Jurdak, M. Portmann, B. Kusy, Towards Optimal Kinetic Energy Harvesting for the Batteryless IoT. 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), 2020, pp. 1-6, doi: 10.1109/PerComWorkshops48775.2020.9156195.
  • J. Hester, J. Sorber. Flicker: Rapid Prototyping for the Batteryless Internet-of-Things. In Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems (SenSys '17). Association for Computing Machinery, NY, USA, Article 19, pp. 1–13, https://doi.org/10.1145/3131672.3131674
  • K. E. Jeon, J. She, J. Xue, S. H. Kim, S. Park, luXbeacon – A Batteryless Beacon for Green IoT: Design, Modeling, and Field Tests. IEEE Internet of Things Journal, 2019, pp. 1-1. 10.1109/JIOT.2019.2894798.
  • M. R. Elhebeary, M. A. A. Ibrahim, M. M. Aboudina, A. N. Mohieldin, Dual-Source Self-Start High-Efficiency Microscale Smart Energy Harvesting System for IoT, IEEE Transactions on Industrial Electronics, vol. 65, no. 1, pp. 342-351, Jan. 2018, doi: 10.1109/TIE.2017.2714119.
  • F. Mazunga, A. Nechibvute, Ultra-low power techniques in energy harvesting wireless sensor networks: Recent advances and issues. Scientific African, Volume 11, 2021
  • I. Joe, M. Shin, Energy Management Algorithm for Solar Powered Energy Harvesting Wireless Sensor Node for IoT. IET Communications, 2016, 10. 10.1049/iet-com.2015.0223.
  • T. S. Muratkar, A. Bhurane, A. Kothari, Batteryless internet of things – A survey. Computer Networks, Volume 180, 2020, 107385, ISSN 1389-1286, https://doi.org/10.1016/j.comnet.2020.107385.
  • J. Hester, J. Sorber, The Future of Sensing is Batteryless, Intermittent, and Awesome. In Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems (SenSys '17). Association for Computing Machinery, NY, USA, Article 21, 1–6. https://doi.org/10.1145/3131672.3131699
  • G. M. Lozito, G. Maria, V. Lucaferri, F. R. Fulginei, A. Salvini, Improvement of an Equivalent Circuit Model for Li-Ion Batteries Operating at Variable Discharge Conditions. Electronics, 2020, 9. 78. 10.3390/electronics9010078.
  • C. Delgado, J. M. Sanz, C. Blondia and J. Famaey, Batteryless LoRaWAN Communications Using Energy Harvesting: Modeling and Characterization, IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2694-2711, 15 Feb.15, 2021, doi: 10.1109/JIOT.2020.3019140.
  • TPS61023, Texas Instruments, link: https://www.ti.com/product/TPS61023, 25.11.2022 tarihinde erişildi.

Güneş Paneli ve Süper Kapasitör ile Beslenen Toprak Nem Sensörü

Year 2023, Volume: 8 Issue: 1, 1 - 8, 28.04.2023
https://doi.org/10.46578/humder.1210812

Abstract

IoT uygulamalarının artmasıyla birlikte akıllı tarım uygulamaları yaygınlık kazanmıştır. Tarım alanlarında nem ve sıcaklık gibi fiziksel ölçümler yapabilmek için (şarjlı veya şarjlı olmayan) pille beslenen akıllı sensörler kullanılmaktadır. Ancak pille beslenen bu sensörler periyodik olarak pil değişimi veya şarjı gerektirmekte, bu da düşük çalışma ömrü, ek bakım işlemleri ve maliyetine sebep olmaktadır. Bu çalışma akıllı sensörler için özgün bir elektrik besleme kaynağı önererek anılan problemleri çözmeyi hedeflemektedir. Bu makalede güneş paneli ile şarj olan bir süper kapasitör kullanarak pile gereksinim duymayan tarımsal kullanım amaçlı bir toprak nem sensörü geliştirilmiştir. Bu sensör arazide kurulduktan sonra şarj veya pil değişimi gibi sebeplerle periyodik bakım gerektirmemektedir. Sensör, kablosuz modülü aracılığıyla periyodik olarak baz istasyonuna nem bilgisi iletmektedir.

References

  • A. R. Al-Ali, A. Al-Nabulsi, S. Mukhopadhyay, M. S. Awal, S. Fernandes, K. Ailabouni, IoT-solar energy powered smart farm irrigation system. Journal of Electronic Science and Technology, Volume 17, Issue 4, 2019
  • T. S. Chaithra, N. Ajay - Smart farm monitoring system using solar-power and Internet of Things devices. International Research Journal of Modernization in Engineering Technology and Science, Volume 02, Issue 07 July 2020.
  • A. C. Tagarakis, D. Kateris, R. Berruto, D. Bochtis, Low-Cost Wireless Sensing System for Precision Agriculture Applications in Orchards. Appl. Sci. 2021, 11, 5858.
  • S. Sadowski, P. Spachos, Solar-Powered Smart Agricultural Monitoring System Using Internet of Things Devices. 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2018, pp. 18-23, doi: 10.1109/IEMCON.2018.8614981.
  • M. Gowda, J. Gowda, S. Iyer, M. Pawar, V. Gaikwad, Power Consumption Optimization in IoT based Wireless Sensor Node Using ESP8266. ITM Web Conf. 32 03048, 2020.
  • M. M. Sandhu, K. Geissdoerfer, S. Khalifa, R. Jurdak, M. Portmann, B. Kusy, Towards Optimal Kinetic Energy Harvesting for the Batteryless IoT. 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), 2020, pp. 1-6, doi: 10.1109/PerComWorkshops48775.2020.9156195.
  • J. Hester, J. Sorber. Flicker: Rapid Prototyping for the Batteryless Internet-of-Things. In Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems (SenSys '17). Association for Computing Machinery, NY, USA, Article 19, pp. 1–13, https://doi.org/10.1145/3131672.3131674
  • K. E. Jeon, J. She, J. Xue, S. H. Kim, S. Park, luXbeacon – A Batteryless Beacon for Green IoT: Design, Modeling, and Field Tests. IEEE Internet of Things Journal, 2019, pp. 1-1. 10.1109/JIOT.2019.2894798.
  • M. R. Elhebeary, M. A. A. Ibrahim, M. M. Aboudina, A. N. Mohieldin, Dual-Source Self-Start High-Efficiency Microscale Smart Energy Harvesting System for IoT, IEEE Transactions on Industrial Electronics, vol. 65, no. 1, pp. 342-351, Jan. 2018, doi: 10.1109/TIE.2017.2714119.
  • F. Mazunga, A. Nechibvute, Ultra-low power techniques in energy harvesting wireless sensor networks: Recent advances and issues. Scientific African, Volume 11, 2021
  • I. Joe, M. Shin, Energy Management Algorithm for Solar Powered Energy Harvesting Wireless Sensor Node for IoT. IET Communications, 2016, 10. 10.1049/iet-com.2015.0223.
  • T. S. Muratkar, A. Bhurane, A. Kothari, Batteryless internet of things – A survey. Computer Networks, Volume 180, 2020, 107385, ISSN 1389-1286, https://doi.org/10.1016/j.comnet.2020.107385.
  • J. Hester, J. Sorber, The Future of Sensing is Batteryless, Intermittent, and Awesome. In Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems (SenSys '17). Association for Computing Machinery, NY, USA, Article 21, 1–6. https://doi.org/10.1145/3131672.3131699
  • G. M. Lozito, G. Maria, V. Lucaferri, F. R. Fulginei, A. Salvini, Improvement of an Equivalent Circuit Model for Li-Ion Batteries Operating at Variable Discharge Conditions. Electronics, 2020, 9. 78. 10.3390/electronics9010078.
  • C. Delgado, J. M. Sanz, C. Blondia and J. Famaey, Batteryless LoRaWAN Communications Using Energy Harvesting: Modeling and Characterization, IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2694-2711, 15 Feb.15, 2021, doi: 10.1109/JIOT.2020.3019140.
  • TPS61023, Texas Instruments, link: https://www.ti.com/product/TPS61023, 25.11.2022 tarihinde erişildi.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Mehmet Hadi Suzer 0000-0002-0083-8757

Publication Date April 28, 2023
Submission Date November 27, 2022
Acceptance Date December 9, 2022
Published in Issue Year 2023 Volume: 8 Issue: 1

Cite

APA Suzer, M. H. (2023). Güneş Paneli ve Süper Kapasitör ile Beslenen Toprak Nem Sensörü. Harran Üniversitesi Mühendislik Dergisi, 8(1), 1-8. https://doi.org/10.46578/humder.1210812