Year 2020, Volume 35 , Issue 4, Pages 843 - 857 2020-10-31

An Investigation on University Students’ Online Information Search Strategies and Relationships with Some Educational Variables
Üniversite Öğrencilerinin Çevrimiçi Bilgi Arama Stratejileri ve Bazı Eğitimsel Değişkenlerle İlişkilerinin İncelenmesi

Kerem AY [1] , Mukaddes ERDEM [2]


The purpose of this study was to determine graduate and undergraduate students’ online information search strategies (OISS) and their relationships with some educational variables. For this purpose, survey method was used. Participants of this research were 1006 undergraduate and graduate students from Turkey who filled the online survey. For measuring students’ OISS, “Online Information Search Strategies Inventory” was utilized. The results showed that the students’ level of OISS development were intermediate. The students reported most confident in “control” strategy which included skills for manipulating the online applications. Moreover, the results indicated that students were least confident about developing a skill to avoid disorientation. The causes of disorientation, even though students knew how to use Internet for searching, were investigated by examining the interactions between strategies. The findings revealed that disorientation was mostly linked to problem solving. Additionally, it was concluded that students, who were confident in metacognitive information search behavior, were also confident in other information search skills. Considering GPA, the study results showed that students with high GPA tended to have better OISS than those who had low GPA. It was also found that OISS changed with education level, major and required online information search for school work. Limitations and future studies were discussed.
Bu araştırmanın amacı lisans ve lisansüstü öğrencilerin çevrimiçi bilgi arama stratejilerinin ve bazı eğitimsel değişkenlerle ilişkilerinin incelenmesidir. Bu amaçla tarama yöntemi kullanılmıştır. Araştırmanın çalışma grubunu ölçekleri çevrimiçi ortamda yanıtlayan, Türkiye'de lisans veya lisansüstü düzeyde öğrenim görmekte olan 1006 öğrenci oluşturmaktadır. Öğrencilerin çevrimiçi bilgi arama stratejilerini ölçmek için “Çevrimiçi Bilgi Arama Stratejileri Envanteri” kullanılmıştır. Araştırmanın sonuçları, öğrencilerin çevrimiçi bilgi arama stratejilerinin gelişmişlik düzeyi bakımından kendilerini orta düzeyde yeterli gördüklerini göstermiştir. Öğrencilerin kendilerini en çok İnternette arama uygulamalarının manipülasyonunu içeren "kontrol" stratejisi bakımından yeterli hissettikleri belirlenmiştir. Bunun yanı sıra öğrencilerin çevrimiçi bilgi aramaya yönelik en zayıf hissettikleri konunun, ortamda kaybolmaya karşı bir strateji geliştirme olduğu belirlenmiştir. Öğrencilerin İnterneti bilgi arama amaçlı olarak kullanmayı bilmelerine rağmen ortamda kaybolmalarının nedeni, stratejiler arası etkileşime bakılarak araştırılmış ve kaybolmanın en çok problem çözme stratejisiyle ilişkili olduğu belirlenmiştir. Ayrıca üst bilişsel düzeyde bilgi arama davranışı sergileyebilen öğrencilerin aynı zamanda diğer bilgi arama davranışlarını da sergileyebilme becerisine sahip oldukları belirlenmiştir. Genel not ortalaması dikkate alındığında çalışma sonuçları, yüksek not ortalamasına sahip öğrencilerin düşük not ortalamasına sahip olanlara göre daha iyi çevrimiçi bilgi arama stratejilerine sahip olma eğiliminde olduğunu göstermiştir. Ayrıca, çevrimiçi bilgi arama stratejilerinin eğitim düzeyi, öğrenim görülen bölüm ve akademik çalışmaların gerektirdiği çevrimiçi bilgi arama düzeyine göre de değiştiği sonucu elde edilmiştir. Çalışmada ayrıca sınırlamalara ve sonraki çalışmalara yönelik tartışma yapılmıştır.
  • Akkoyunlu, B., & Yılmaz, E. (2005). Öğretmen adaylarının bilgi okuryazarlık düzeyleri ile İnternet kullanım sıklıkları ve İnternet kullanım amaçları. Eğitim Araştırmaları, 19, 1-4.
  • Alba, J., & Hutchinson, W. (1987). Dimensions of consumer expertise. Journal of Consumer Research, 13, 411–454.
  • Aşkar, P., & Mazman, S. G. (2013). Çevrimiçi bilgi arama stratejileri envanterinin Türkçeye uyarlama çalışması. Eğitim ve Bilim, 38(168), 167-182.
  • Bates, M. J. (1996). The Getty end-user online searching project in the humanities: Report No. 6. Overview and conclusion. College and Research Libraries, 57, 514-523.
  • Beasley, R. E., & Waugh, M. L. (1995). Cognitive mapping architectures and hypermedia disorientation: An empirical study. Journal of Educational Multimedia and Hypermedia, 4(2/3), 239-255.
  • Brand-Gruwel, S., Wopereis, I., & Walwaren, A. (2009). A descriptive model of information problem solving while using Internet. Computers & Education, 53, 1207-1217.
  • Chevalier, A., Dommes, A., & Marquié, J. C. (2015). Strategy and accuracy during information search on the Web: Effects of age and complexity of the search questions. Computers in Human Behavior, 53, 305-315.
  • Covi, L. M. (1999). Material mastery: Situating digital library use in university research practices. Information Processing and Management, 15, 69-91.
  • Çoklar, A. N., Yaman, N. D., & Yurdakul, I. K. (2017). Information literacy and digital nativity as determinants of online information search strategies. Computers in Human Behavior, 70, 1-9.
  • Debowski, S. (2001). Wrong way: Go back! An exploration of novice search behaviours while conducting an information search. The Electronic Library, 19, 371-382.
  • Dias, P., Gomes, M. J., & Correia, A. P. (1999). Disorientation in hypermedia environments: Mechanisms to support navigation. Journal of Educational Computing Research, 20(2), 93-117.
  • Fischer, K. W. (1980). A theory of cognitive development: The control and construction of hierarchies of skills. Psychological Review, 87(6), 477-531.
  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive–developmental inquiry. American Psychologist, 34(10), 906-911.
  • Folster, M. B. (1995). Information-seeking patterns: Social sciences. The Reference Librarian, 49(50), 83-93.
  • Fraenkel, J. R., & Wallen, N. E. (2009). How to design and evaluate research in education. New York: McGraw-Hill.
  • Fraser, B. J. (1981). Test of science related attitudes handbook (TOSRA). Melbourne, Australia: Australian Council for Educational Research.
  • Gagne, R. M. (1985). The conditions of learning. New York: Holt, Rinehart & Winston.
  • Ge, X. (2010). Information-seeking behavior in the digital age: A multidisciplinary study of academic researchers. College & Research Libraries, 71(5), 435-455.
  • Hannafin, M. J., Hill, J. R., & Land, S. (1997). Student centered learning and interactive multimedia: Status, issues, and implications. Contemporary Education, 68(2), 94-99.
  • Hill, B. (1999). A conceptual framework for understanding information seeking in open-ended information systems. Educational Technology Research & Development, 47(1), 5-27.
  • Hill, J. R., & Hannafin, H. J. (1997). Cognitive strategies and learning from the World Wide Web. Educational Technology Research & Development, 45(4), 37-64.
  • Hoffman, J. L., Wu, H.-K., Krajcik, J. S., & Soloway, E. (2003). The nature of learners’ science content understandings with the use of on-line resources. Journal of Research in Science Teaching, 40, 323–346.
  • Hölscher, C., & Strube, G. (2000). Web search behavior of Internet experts and newbies. Computer Networks, 33, 337–346.
  • Internet World Stats. (2018). Internet usage statistics: The Internet big picture. World Internet users and population stats. [Online: http://www.internetworldstats.com/stats.htm, Access Date: 16.12.2018.]
  • Jackson, L. A., von Eye, A., & Biocca, F. A. (2003). Does home İnternet use influence the academic performance of low‐income children? Findings from the homenettoo project. First Latin American Web Congress (LA‐WEBʹ03).
  • Jackson, L. A., von Eye, A., Biocca, F. A., Barbatsis, G., Zhao, Y., & Fitzgerald, H. E. (2006). Does home Internet use influence the academic performance of low-income children? Developmental Psychology, 42(3), 429-435.
  • Kafai, Y., & Bates, M. J. (1997). Internet Web-searching instruction in the elementary classroom: Building a foundation for information literacy. School Library Media Quarterly, 103-111.
  • Kalaycı, Ş. (2010). SPSS uygulamalı çok değişkenli istatistik teknikleri. Ankara: Asil Yayın Dağıtım.
  • Khosrowjerdi, M., & Iranshahi, M. (2011). Prior knowledge and information-seeking behavior of PhD and MA students. Library & Information Science Research, 33, 331-335.
  • Kim, J. (2009). Predictors of behavioral intentions in Web searching. Vancouver, British Columbia, Canada: American society for information science and technology annual meeting. [Online: http://www.asis.org/Conferences/AM09/open-proceedings/posters/82.xml, Access Date: 07.05.2017.]
  • Kozma, R. B. (1988). The implications of cognitive psychology for computer-based learning tools. Educational Technology, 27(11), 20-25.
  • Kuhlthau, C. C. (1993). Seeking meaning: A process approach to library and information services. Norwood, NJ: Ablex Publishing.
  • Kurt, A. A., & Emiroglu, B. G. (2018). Analysis of students' online information searching strategies, exposure to Internet information pollution and cognitive absorption levels based on various variables. Malaysian Online Journal of Educational Technology, 6(1), 18-29.
  • Marchionini, G. (1995). Information seeking in electronic environments. New York: Cambridge University Press.
  • McGrew, S., Breakstone, J., Ortega, T., Smith, M., & Wineburg, S. (2018). Can students evaluate online sources? Learning from assessments of civic online reasoning. Theory & Research in Social Education, 46(2), 165-193.
  • Navarro-Prieto, R., Scaife, M., & Rogers, Y. (1999). Cognitive strategies in Web searching. [Online: http://zing.ncsl.nist.gov/hfweb/proceedings/navarro-prieto/index.html, Access Date: 05.05.2017.]
  • Rouet, J. F. (2003). What was I looking for? The influence of task specificity and prior knowledge on students’ search strategies in hypertext. Interacting with Computers, 15, 409-428.
  • Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online, 8, 23-74.
  • Sırakaya, M., & Çakır, H. (2014). Öğretmen adaylarının çevrimiçi bilgi arama stratejilerinin belirlenmesi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi (KEFAD), 15(2), 191-206.
  • Smart, J. C. (2000). Academic disciplines: Holland’s theory of the study of college students and faculty. Nashville, TN: Vanderbilt University Press.
  • Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (sixth ed.). Boston: Pearson.
  • Thatcher, A. (2006). Information seeking behaviours and cognitive strategies in different search tasks on the WWW. International Journal of Industrial Ergonomics, 36, 1055-1068.
  • Tsai, C. C. (2004). Information commitments in Web-based learning environments. Innovations in Education and Teaching International, 41, 105-112.
  • Tsai, M. J. (2009). Online information searching strategy inventory (OISSI): A quick version and a complete version. Computers & Education, 53, 473-483.
  • Tsai, M. J., & Tsai, C. C. (2003). Information searching strategies in Web-based science learning: The role of Internet self-efficacy. Innovations in Education and Teaching International, 40(1), 43-50.
  • Tsikalas, K., Lee, J., & Newkirk, C. (2007). Home computing, school engagement and academic achievement of low-income adolescents. [Online: http://www.socialimpactexchange.org/files/CFY-ETS_Research_Study_FINAL.pdf, Access Date: 02.06.2017.]
  • Tu, Y. W., Shih, M., & Tsai, C. C. (2008). Eighth graders’ Web searching strategies and outcomes: The role of task types, Web experiences and epistemological beliefs. Computers & Education, 51, 1142-1153.
  • Uçak, N. Ö., & Güzeldere, Ş. O. (2006). Bilişsel yapının ve işlemlerin bilgi arama davranışı üzerine etkisi. Türk Kütüphaneciliği, 20(1), 7-28.
  • Van Gigch, J. P. (1991). System design modeling and metamodeling. New York: Plenum Press.
  • Wang, P. (2006). Information behaviors of academic researchers in the Internet era: An interdisciplinary & cross-cultural study. 1st International Scientific Conference eRA. The Information Technology to Science, Economy, Society & Education.
  • Whitmire, E. (2002). Disciplinary differences and undergraduates’ information-seeking behaviour. Journal of the American Society for Information Science and Technology, 53(8), 631-638.
  • Wu, Y. T., & Tsai, C. C. (2007). Developing an information commitment survey for assessing students’ Web information searching strategies and evaluative standards for Web materials. Educational Technology & Society, 10(2), 120-132.
  • Yurdugül, H., & Aşkar, P. (2008). Öğrencilerin teknolojiye yönelik tutum ölçeği faktör yapılarının incelenmesi: Türkiye örneği. İlköğretim Online, 7(2), 288-309.
  • Zhu, Y.-Q., Chen, L.-Y., Chen, H.-G., & Chern, C.-C. (2011). How does Internet information seeking help academic performance? – The moderating and mediating roles of academic self-efficacy. Computers & Education, 57, 2476–2484.
Primary Language en
Subjects Education and Educational Research
Journal Section Makaleler
Authors

Orcid: 0000-0002-6759-9965
Author: Kerem AY
Institution: LOKMAN HEKİM ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0002-8724-3923
Author: Mukaddes ERDEM
Institution: HACETTEPE ÜNİVERSİTESİ
Country: Turkey


Dates

Publication Date : October 31, 2020

APA Ay, K , Erdem, M . (2020). An Investigation on University Students’ Online Information Search Strategies and Relationships with Some Educational Variables . Hacettepe Üniversitesi Eğitim Fakültesi Dergisi , 35 (4) , 843-857 . Retrieved from https://dergipark.org.tr/en/pub/hunefd/issue/57647/818898