BibTex RIS Cite

Sınıf Öğretmeni Adaylarının Matematik Öğretiminde Materyal Kullanımına İlişkin Bilişsel Becerileri

Year 2008, Volume: 35 Issue: 35, 362 - 373, 01.06.2008

Abstract

Ülkemizde 2005 yılında uygulanmaya başlayan matematik eğitimi programı ile derslerde materyal kullanımı oldukça önem kazanmıştır. Bu durum gerek hizmet içi, gerekse hizmet öncesi eğitim sırasında öğretmenlerin ve öğretmen adaylarının materyal seçimi ve kullanımı konusunda bilgilendirilmesini gerektirmektedir. Bu çalışma ile sınıf öğretmeni adaylarının matematik öğretiminde materyal kullanımı ile ilgili bilgi ve becerilerinin tespit edilmesi ve bu alanda yaşadıkları zorlukların saptanması hedeflenmiştir. Bu amaçla öğretmen adaylarının iki dönem boyunca aldıkları matematik öğretimi dersleri sırasında yazdıkları günlükler ve hazırladıkları projeler incelenmiş, sınıf içinde yapılan tartışmalar gözlenmiştir. Çalışmanın bulguları çoğu öğretmen adayının materyal kullanımı konusunda olumlu görüşlere sahip olduğunu; ancak materyallerin matematik kavramlarını anlamaya nasıl yardımcı olabildiği üzerinde çok da net fikirleri olmadığını göstermiştir. Özellikle öğretmen adaylarının, öğrencilerin materyal ile kavram arasındaki ilişkiyi kurmalarına yardımcı olabilecek yönlendirmeleri yapılandırmakta zorlandıkları tespit edilmiştir. Bu bulgular ışığında öğretmen adaylarının bu alandaki bilgi ve becerilerini geliştirmelerine yardımcı olabilecek ortamların nasıl yapılandırılabileceği tartışılmıştır

References

  • Ball, D. L. (1992). Magical hopes: Manipulatives and the reform of math education. American Educator, 16, 14–18.
  • Baroody, A. J. (1989). Manipulatives don’t come with guarantees. Arithmetic Teacher, 37(2), 4-5.
  • Bruner, J. S. (1966). Toward a theory of instruction. Cambridge, MA: Belknap Press.
  • Bruner, J. S. (2006). In search of pedagogy: Volume I, New York, NY: Taylor & Francis Group.
  • Clements, D. H. (1999). ‘Concrete’ manipulatives, concrete ideas. Contemporary Issues in Early Childhood, 1(1),45–60.
  • Cramer, K. A., Post, T. R., & delMas, R. C. (2002). Initial fraction learning by fourth- and fifth-grade students: A comparison of the effects of using commercial curricula with the effects of using the rational number project curriculum. Journal for Research in Mathematics Education, 33(2), 111-144.
  • Çakıroğlu, E. & Yıldız, B. T. (2007). Turkish preservice teachers’ views about manipulative use in mathematics education. In C. S. Sunal & M. Kagendo (Eds.), The enterprise of education, (pp. 275-289). Information Age Publishing Inc.
  • Dienes, Z. P. & Golding, E. W. (1971). Approach to modern mathematics. New York: Herder and Herder.
  • Graeber, A. O. (1999). Forms of knowing mathematics: What preservice teachers should learn. Educational Studies in Mathematics, 38, 189-208.
  • Grant, S. G., Peterson, P. L., & Shojgreen-Downer, A. (1996). Learning to teach mathematics in the context of system reform. American Educational Research Journal, 33(2), 509-541.
  • Fuson, K. C. & Briars, D. J. (1990). Using a base-ten blocks learning/teaching approach for first and second grade place- value and multidigit addition and subtraction. Journal for Research in Mathematics Education, 21, 180–206.
  • Hatfield, M. (1994). Use of manipulative devices: Elementary school cooperating teachers self-report. School Science and Mathematics, 94(6), 303-309.
  • Hiebert, J. & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning, (pp. 65-97). New York: Macmillan.
  • Hiebert, J., & Wearne, D. (1992). Links between teaching and learning place value with understanding in first grade. Journal for Research in Mathematics Education, 23, 98-122.
  • Howard, P., Perry, B., & Tracey, D. (1997, Aralık). Mathematics and manipulatives: Comparing primary and secondary mathematics teachers’ views. Makale Annual Meeting of the Australian Association for Research in Education konferansında bildiri olarak sunulmuştur, Brisbane, Australia (ED 461 502).
  • Hughes, M. (1986). Children and number: Difficulties in learning mathematics. Massachusetts: Blackwell Publishers.
  • Kamii, C., Lewis, B. A., & Kirkland, L. (2001). Manipulatives: When are they useful? Journal of Mathematical Behavior, 20, 21-31.
  • Lampert, M. (1990). When the problem is not the question and the solution is not the answer: Mathematical knowing and teaching. American Educational Research Journal, 27 (1), 29-63.
  • Moyer, P. S. (2001). Are we having fun yet? How teachers use manipulatives to teach mathematics. Educational Studies in Mathematics, 47, 175-197.
  • Piaget, J. (1971). Biology and knowledge. Chicago: The University of Chicago Press.
  • Raphael, D. & Wahlstrom, M. (1989). The influence of instructional aids on mathematics achievement. Journal for Research in Mathematics Education, 20, 173-190.
  • Schoenfeld, A. H. (1987). What’s all the fuss about metacognition? In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 189-215). Hillsdale, NJ: Lawrence Erlbaum.
  • Schoenfeld, A. H. (1988). When good teaching leads to bad results: The disaster of “well-taught” mathematics courses. Educational Psychologist, 23(2), 145-166.
  • Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition and sense making in mathematics. In D. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 334-370). New York, NY: MacMillan.
  • Skemp, R. R. (1987). The psychology of learning mathematics, Hillsdale, NJ: Lawrence Erlbaum.
  • Stein, M. K. & Bovalino, J. W. (2001). Manipulatives: One piece of the puzzle. Mathematics Teaching in the Middle School, 6(9), 356-359.
  • Sowell, E. (1989). Effects of manipulative materials in mathematics instruction. Journal for Research in Mathematics Education, 20 (5), 498-505.
  • Uttal, D. H., Scudder, K. V., & DeLoache, J. S. (1997). Manipulatives as symbols: A new perspective on the use of concrete objects to teach mathematics. Journal of Applied Developmental Psychology, 18, 37-54.
  • Van De Walle, J. A. (2001). Elementary and middle school mathematics: Teaching developmentally (4th Ed.). New York: Longman.
  • Wearne, D. & Hiebert, J. (1988). A cognitive approach to meaningful mathematics instruction: Testing a local theory using decimal numbers. Journal for Research in Mathematics Education, 19, 371-384.
  • Yıldırım, A. ve Şimşek, H. (2006). Sosyal bilimlerde nitel araştırma yöntemleri. Seçkin Yayıncılık: Ankara.
Year 2008, Volume: 35 Issue: 35, 362 - 373, 01.06.2008

Abstract

References

  • Ball, D. L. (1992). Magical hopes: Manipulatives and the reform of math education. American Educator, 16, 14–18.
  • Baroody, A. J. (1989). Manipulatives don’t come with guarantees. Arithmetic Teacher, 37(2), 4-5.
  • Bruner, J. S. (1966). Toward a theory of instruction. Cambridge, MA: Belknap Press.
  • Bruner, J. S. (2006). In search of pedagogy: Volume I, New York, NY: Taylor & Francis Group.
  • Clements, D. H. (1999). ‘Concrete’ manipulatives, concrete ideas. Contemporary Issues in Early Childhood, 1(1),45–60.
  • Cramer, K. A., Post, T. R., & delMas, R. C. (2002). Initial fraction learning by fourth- and fifth-grade students: A comparison of the effects of using commercial curricula with the effects of using the rational number project curriculum. Journal for Research in Mathematics Education, 33(2), 111-144.
  • Çakıroğlu, E. & Yıldız, B. T. (2007). Turkish preservice teachers’ views about manipulative use in mathematics education. In C. S. Sunal & M. Kagendo (Eds.), The enterprise of education, (pp. 275-289). Information Age Publishing Inc.
  • Dienes, Z. P. & Golding, E. W. (1971). Approach to modern mathematics. New York: Herder and Herder.
  • Graeber, A. O. (1999). Forms of knowing mathematics: What preservice teachers should learn. Educational Studies in Mathematics, 38, 189-208.
  • Grant, S. G., Peterson, P. L., & Shojgreen-Downer, A. (1996). Learning to teach mathematics in the context of system reform. American Educational Research Journal, 33(2), 509-541.
  • Fuson, K. C. & Briars, D. J. (1990). Using a base-ten blocks learning/teaching approach for first and second grade place- value and multidigit addition and subtraction. Journal for Research in Mathematics Education, 21, 180–206.
  • Hatfield, M. (1994). Use of manipulative devices: Elementary school cooperating teachers self-report. School Science and Mathematics, 94(6), 303-309.
  • Hiebert, J. & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning, (pp. 65-97). New York: Macmillan.
  • Hiebert, J., & Wearne, D. (1992). Links between teaching and learning place value with understanding in first grade. Journal for Research in Mathematics Education, 23, 98-122.
  • Howard, P., Perry, B., & Tracey, D. (1997, Aralık). Mathematics and manipulatives: Comparing primary and secondary mathematics teachers’ views. Makale Annual Meeting of the Australian Association for Research in Education konferansında bildiri olarak sunulmuştur, Brisbane, Australia (ED 461 502).
  • Hughes, M. (1986). Children and number: Difficulties in learning mathematics. Massachusetts: Blackwell Publishers.
  • Kamii, C., Lewis, B. A., & Kirkland, L. (2001). Manipulatives: When are they useful? Journal of Mathematical Behavior, 20, 21-31.
  • Lampert, M. (1990). When the problem is not the question and the solution is not the answer: Mathematical knowing and teaching. American Educational Research Journal, 27 (1), 29-63.
  • Moyer, P. S. (2001). Are we having fun yet? How teachers use manipulatives to teach mathematics. Educational Studies in Mathematics, 47, 175-197.
  • Piaget, J. (1971). Biology and knowledge. Chicago: The University of Chicago Press.
  • Raphael, D. & Wahlstrom, M. (1989). The influence of instructional aids on mathematics achievement. Journal for Research in Mathematics Education, 20, 173-190.
  • Schoenfeld, A. H. (1987). What’s all the fuss about metacognition? In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 189-215). Hillsdale, NJ: Lawrence Erlbaum.
  • Schoenfeld, A. H. (1988). When good teaching leads to bad results: The disaster of “well-taught” mathematics courses. Educational Psychologist, 23(2), 145-166.
  • Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition and sense making in mathematics. In D. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 334-370). New York, NY: MacMillan.
  • Skemp, R. R. (1987). The psychology of learning mathematics, Hillsdale, NJ: Lawrence Erlbaum.
  • Stein, M. K. & Bovalino, J. W. (2001). Manipulatives: One piece of the puzzle. Mathematics Teaching in the Middle School, 6(9), 356-359.
  • Sowell, E. (1989). Effects of manipulative materials in mathematics instruction. Journal for Research in Mathematics Education, 20 (5), 498-505.
  • Uttal, D. H., Scudder, K. V., & DeLoache, J. S. (1997). Manipulatives as symbols: A new perspective on the use of concrete objects to teach mathematics. Journal of Applied Developmental Psychology, 18, 37-54.
  • Van De Walle, J. A. (2001). Elementary and middle school mathematics: Teaching developmentally (4th Ed.). New York: Longman.
  • Wearne, D. & Hiebert, J. (1988). A cognitive approach to meaningful mathematics instruction: Testing a local theory using decimal numbers. Journal for Research in Mathematics Education, 19, 371-384.
  • Yıldırım, A. ve Şimşek, H. (2006). Sosyal bilimlerde nitel araştırma yöntemleri. Seçkin Yayıncılık: Ankara.
There are 31 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

İ Elif Yetkin Özdemir This is me

Publication Date June 1, 2008
Published in Issue Year 2008 Volume: 35 Issue: 35

Cite

APA Özdemir, İ. E. Y. (2008). Sınıf Öğretmeni Adaylarının Matematik Öğretiminde Materyal Kullanımına İlişkin Bilişsel Becerileri. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 35(35), 362-373.