Review
BibTex RIS Cite

Most Important Heritage Mother Microbiota

Year 2020, , 285 - 291, 30.11.2020
https://doi.org/10.31125/hunhemsire.834219

Abstract

The microorganisms in the human body or the gene pack provided by the microbiota are known as human microbiome. Microorganisms considered as dangerous occupants provide critical functions in basic human processes and non-pathogenic microorganisms were found in many body fluids and anatomical regions which were considered sterile. The colonization of microbiota is an ongoing process starting from intrauterine period, increasing its diversity especially up to the first three years. Therefore, it is important to know the factors affecting the colonization of microbiota from intrauterine period. One of these factors is maternal vagina. The impaired maternal vaginal microbiota can cause pregnancy complications and preterm labor. Transition to microbiota during pregnancy and birth continues with postpartum breastfeeding.
It is necessary to know the effect of pregnancy, birth and breastfeeding on microbiota and to increase the awareness of health professionals and expectant mothers about the factors that negatively affect the formation of healthy microbiota in these processes. This review was carried out to evaluate the role of pregnancy process, type of delivery and breastmilk in the formation and development of microbiology ecosystem which have important effects on general health level in the light of current literature.

References

  • 1. Baquero F, Nombela C. The microbiome as a human organ. Clin Microbiol Infect. 2012;2–4.
  • 2. Ravel J, Gajera P, Abdob Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA. 2011;108:4680–7. 3. Relman DA. The human microbiome and future practice of medicine. JAMA. 2015;314(11):1127-8
  • 4. Zhu B, Wang X, Li L. Human gut microbiome: The second genome of human body. Protein & Cell. 2010;1:718–25.
  • 5. Ardissone AN, De la Cruz DM, Davis-Richardson AG, Rechcigl KT, Li N, Drew JC, et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One. 2014;9(3):90784.
  • 6. Cacho N, Neu J. Manipulation of the intestinal microbiome in newborn infants. Adv Nutr. 2014;5(1):114-18.
  • 7. Rautava S. Early microbial contact the breast milk microbiome and child health. J Dev Orig Health Dis. 2016;7(1):5-14.
  • 8. Herrema H, Ijzerman RG, Nieuwdorp M. Emerging role of intestinal microbiota and microbial metabolites in metabolic control. Diabetologia. 2016;60(4):613-617.
  • 9. Zeeuwena LJMP, Kleerebezemb M, Timmermanc M.H, Schalkwijk J. Microbiome and skin diseases. Curr Opin Allergy Clin Immunol. 2013;13:514–520
  • 10. Salem I, Ramser A, Isham N, Ghannoum M.A. The gut microbiome as a major regulator of the gut-skin axis. Front Microbiol. 2018;9:1459.
  • 11. Patını R, Staderını E, Lajolo C, Lopetuso L, Mohammed H, Rımondını, L, et al. Relationship between oral microbiota and periodontal disease: A systematic review. Eur. Rev. Med. Pharmacol. Sci. 2018;22:5775-88.
  • 12. Gern JE. The urban environment and childhood asthma study. Journal of Allergy and Clinical Immunology. 2010;125:545-49.
  • 13. Liu F, Lv L, Jiang H, Yan R, Dong S, Chen L, Wang W, Chen YQ. Alterations in the urinary microbiota are associated with cesarean delivery. Front Microbiol. 2018;9:2193
  • 14. Ait-Belgnaoui A, Colom A, Braniste V, Ramalho L, Marrot A, Cartier C, et al. Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol Motil. 2014;26:510–20.
  • 15. Cani PD, Everard A, Duparc T. Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol. 2013;13:935–40.
  • 16. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous system in health and disease. Nat Neurosci. 2017;20:145-55.
  • 17. Abbott A. Sugar substitutes linked to obesity. Nature. 2014;18:513.
  • 18. Bajaj JS. The relationship between the gut microbiota and liver disease. Gastroenterology & Hepatology. 2015;11(9):626-29.
  • 19. Shi M, Wei Y, Hu W, Nie Y, Wu X Lu R. The subgingival microbiome of periodontal pockets with different probing depths in chronic and aggressive periodontitis: A pilot study. Front Cell Infect Microbiol. 2018;8:124.
  • 20. Castro-Nallar E, Bendall ML, Pérez-Losada M, Sabuncyan S, Severance EG, Dickerson FB, et al. Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls. PeerJ. 2015;3:1140.
  • 21. Harach T, Marungruang N, Dutilleul N, Cheatham V, Mc Coy KD, Frisoni G, et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Scientific Reports. 2017;7:41802.
  • 22. Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, et al. Colonic bacterial composition in Parkinson’s disease. Mov Disord. 2015;30:1351–60.
  • 23. Dunlop AL, Mulle JG, Ferranti EP, Edwards S, Dunn AB, Corwin EJ. Maternal microbiome and pregnancy outcomes that impact infant health: A review. Adv Neonatal Care. 2015;15:377–85.
  • 24. Cunha AJ, Leite ÁJ, Almeida IS. The pediatrician’s role in the first thousand days of the child: The pursuit of healthy nutrition and development. J Pediatr (Rio J). 2015;91(6):44-51.
  • 25. Amenyogbe N, Kollmann TR, Ben-Othman R. Early-life host-microbiome interphase: The key frontier for immune development. Front Pediatr. 2017;24(5):111.
  • 26. Duncan SH, Louis P, Flint HJ. Cultivable bacterial diversity from the human colon. Lett Appl Microbiol. 2007;44:343–50.
  • 27. Decker E, Engelmann G, Findeisen A, Gerner P, Laass M, Ney D, Posovszky C, Hoy L, et al. Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Pediatrics. 2010;125:1433–40.
  • 28. Hyman RW, Fukushima M, Jiang H, Fung E, Rand L, Johnson B, Vo KC, et al. Diversity of the vaginal microbiome correlates with preterm birth. Reprod Sci. 2014;21:32–40.
  • 29. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6:237.
  • 30. Jost T, Lacroix C, Braegger CP, Chassard C. New insights in gut microbiota establishment in healthy breast fed neonates. PloS One. 2012;7:44595.
  • 31. Sirota I, Zarek SM, Segars JH. Potential Influence of the microbiome on infertility and assisted reproductive technology. Semin Reprod Med. 2014;32(1):35–42.
  • 32. Aagaard K, Riehle K, Ma Jun, Segata N, Mistretta TA, Coarfa C, et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PloS One. 2012;7:36466.
  • 33. Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Nikita L, et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome. 2014;2:4.
  • 34. Reid, G, Younes JA, Van der Mei HC, Gloor GB, Knight R, Busscher HJ, et al. Microbiota restoration: natural and supplemented recovery of human microbial communities. Nature reviews. Microbiology. 2010;9:27–38.
  • 35. DiGuilio DB, Romero R, Kusanovic JP. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am J Reprod Immunol. 2010;64:38–57.
  • 36. Taylor BD, Darville T, Haggerty CL. Does bacterial vaginosis cause pelvic infl ammatory disease?. Sex Transm Dis. 2013;40(2):117-22.
  • 37. Beruchashvili M, Gogiashvili L, Datunashvili E, Topuria Z, Tsagareli Z. Morphological peculiarities of endometrium in chronic endometritis associated with bacterial vaginosis. Georgian Med News. 2010;181:59-63.
  • 38. Sirota I, Zarek SM, Segars JH. Potential Influence of the Microbiome on Infertility and Assisted Reproductive Technology. Semin Reprod Med. 2014;32(1):35–42.
  • 39. Van Oostrum N, De Sutter P, Meys J, Verstraelen H. Risks associated with bacterial vaginosis in infertility patients: a systematic review and meta-analysis. Hum Reprod. 2013;28(7):1809-15.
  • 40. Haahr T, Jensen JS, Thomsen L, Duus L, Rygaard K, Humaidan P. Abnormal vaginal microbiota may be associated with poor reproductive outcomes: A prospective study in IVF patients. Hum Reprod. 2016;31(4):795-803.
  • 41. Salah RM, Allam AM, Magdy AM, Mohamed ASH. Bacterial vaginosis and infertility: cause or association? Eur J Obstet Gynecol Reprod Biol. 2013;167(1):59-63.
  • 42. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.
  • 43. Rigon G, Vallone C, Lucantoni V, Signore F. Maternal factors pre- and during delivery contribute to gut microbiota shaping in newborns. Front Cell Infect Microbiol. 2012;2:93.
  • 44. Goedert JJ, Hua X, Yu G, Shi J. Diversity and composition of the adult fecal microbiome associated with history of cesarean birth or appendectomy: Analysis of the American Gut Project. EBioMedicine. 2014;1(2-3):167–72.
  • 45. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A, Gonzalez A, Clemente JC. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med. 2016;22(6):250–53.
  • 46. Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(6):690–703.
  • 47. Nagpal R, Tsuji H, Takahashi T, Kawashima K, Nagata S, Nomoto K, et al. Sensitive Quantitative Analysis of the Meconium Bacterial Microbiota in Healthy Term Infants Born Vaginally or by Cesarean Section. Front Microbiol. 2016;7:1997.
  • 48. Smaill FM, Grivell RM. Antibiotic prophylaxis versus no prophylaxis for preventing infection after cesarean section. Cochrane Database Syst Rev. 2014;(10):7482.
  • 49. Prior E, Santhakumaran S, Gale C, Philipps LH, Modi N, Hyde MJ. Breastfeeding after cesarean delivery: A systematic review and meta-analysis of world literature. Am J Clin Nutr. 2012;95(5):1113–35.
  • 50. Karlstrom A, Lindgren H, Hildingsson I. Maternal and infant outcome after caesarean section without recorded medical indication: findings from a Swedish case-control study. BJOG. 2013;120(4):479–86.
  • 51. Jost T, Lacroix C, Braegger CP, Chassard C. New insights in gut microbiota establishment in healthy breast fed neonates. PloS One. 2012;7(8):445-95.
  • 52. Jeurink PV, Bergenhenegouwen J, Jiménez E, Knippels LM, Fernández L,Garssen J, et al. Human milk: a source of more life than we imagine. Benef Microbes. 2013;4(1):17-30.
  • 53. Hunt KM, Foster JA, Forney LJ, Schütte UM, Beck DL, Abdo Z, et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One. 2011;6:21313.
  • 54. World Health Organization. Breastfeeding [Internet]. 2016 [Erişim Tarihi 10 Mart 2019] Erişim adresi: https://www.who.int/health-topics/breastfeeding#tab=tab_3
  • 55. Türkiye Nüfus ve Sağlık Araştırması (TNSA). Beslenme Durumu ve Çocuk Sağlığı. Ankara: Hacettepe Üniversitesi Nüfus Etütleri Enstitüsü [Internet]. 2018 [Erişim Tarihi 09 Mart 2020] Erişim adresi: http://www.hips.hacettepe.edu.tr/tnsa2018/analiz.shtml
  • 56. Ho NT, Li F, Lee-Sarwar KA, Tun HM, Brown BP, Pannaraj PS, et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat Commun. 2018;9(1):1-13.
  • 57. Pannaraj PS, Li F, Cerini C, Bender JM, Yang S, Rollie A, et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA pediatrics. 2017;171(7):647-54.
  • 58. Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012; 96(3):544–51. cultural competence. Online Journal of Issues in Nursing. 2011;16(2):544-51.

En Önemli Miras Anne Mikrobiyotası

Year 2020, , 285 - 291, 30.11.2020
https://doi.org/10.31125/hunhemsire.834219

Abstract

İnsan vücudunda yaşayan mikroorganizmalar veya mikrobiyota tarafından sağlanan gen paketi, insan mikrobiyomu olarak bilinmektedir. Tehlikeli işgalciler olarak düşünülen mikroorganizmaların, temel insan süreçlerinde kritik işlevler sağladığı ve steril kabul edilen birçok vücut sıvısı ve anatomik bölgelerde non-patojen mikroorganizmaların olduğu saptanmıştır. Mikrobiyotaların kolonizasyonu, intrauterin dönemden başlayıp özellikle üç yaşa kadar çeşitliliğini artırarak devam eden bir süreçtir. Bu yüzden intrauterin dönemden itibaren mikrobiyatanın kolonileşmesini etkileyen faktörlerin bilinmesi önemlidir. Bu faktörlerden biri maternal vajinadır. Bozulmuş maternal vajinal mikrobiyota gebelik komplikasyonlarına ve erken doğuma neden olabilmektedir. Ayrıca doğum şeklinin de fetüste mikrobiyata gelişimi üzerinde önemli etkisi vardır. Gebelik ve doğum anında mikrobiyota geçişi, doğum sonrası emzirme ile devam etmektedir.
Gebelik, doğum ve emzirmenin mikrobiyota üzerine etkisinin bilinmesi ve bu süreçlerde sağlıklı mikrobiyota oluşumunu olumsuz etkileyen faktörler konusunda sağlık profesyonellerinin ve anne adaylarının farkındalığının artırılması gerekmektedir. Bu derleme, gebelik süreci, doğum şekli ve anne sütünün, genel sağlık düzeyi üzerine önemli etkileri olan mikrobiyota ekosisteminin oluşumu ve gelişimindeki rollerinin güncel literatür eşliğinde değerlendirilmesi amacıyla yapılmıştır.

References

  • 1. Baquero F, Nombela C. The microbiome as a human organ. Clin Microbiol Infect. 2012;2–4.
  • 2. Ravel J, Gajera P, Abdob Z, Schneider GM, Koenig SS, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA. 2011;108:4680–7. 3. Relman DA. The human microbiome and future practice of medicine. JAMA. 2015;314(11):1127-8
  • 4. Zhu B, Wang X, Li L. Human gut microbiome: The second genome of human body. Protein & Cell. 2010;1:718–25.
  • 5. Ardissone AN, De la Cruz DM, Davis-Richardson AG, Rechcigl KT, Li N, Drew JC, et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One. 2014;9(3):90784.
  • 6. Cacho N, Neu J. Manipulation of the intestinal microbiome in newborn infants. Adv Nutr. 2014;5(1):114-18.
  • 7. Rautava S. Early microbial contact the breast milk microbiome and child health. J Dev Orig Health Dis. 2016;7(1):5-14.
  • 8. Herrema H, Ijzerman RG, Nieuwdorp M. Emerging role of intestinal microbiota and microbial metabolites in metabolic control. Diabetologia. 2016;60(4):613-617.
  • 9. Zeeuwena LJMP, Kleerebezemb M, Timmermanc M.H, Schalkwijk J. Microbiome and skin diseases. Curr Opin Allergy Clin Immunol. 2013;13:514–520
  • 10. Salem I, Ramser A, Isham N, Ghannoum M.A. The gut microbiome as a major regulator of the gut-skin axis. Front Microbiol. 2018;9:1459.
  • 11. Patını R, Staderını E, Lajolo C, Lopetuso L, Mohammed H, Rımondını, L, et al. Relationship between oral microbiota and periodontal disease: A systematic review. Eur. Rev. Med. Pharmacol. Sci. 2018;22:5775-88.
  • 12. Gern JE. The urban environment and childhood asthma study. Journal of Allergy and Clinical Immunology. 2010;125:545-49.
  • 13. Liu F, Lv L, Jiang H, Yan R, Dong S, Chen L, Wang W, Chen YQ. Alterations in the urinary microbiota are associated with cesarean delivery. Front Microbiol. 2018;9:2193
  • 14. Ait-Belgnaoui A, Colom A, Braniste V, Ramalho L, Marrot A, Cartier C, et al. Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol Motil. 2014;26:510–20.
  • 15. Cani PD, Everard A, Duparc T. Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol. 2013;13:935–40.
  • 16. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous system in health and disease. Nat Neurosci. 2017;20:145-55.
  • 17. Abbott A. Sugar substitutes linked to obesity. Nature. 2014;18:513.
  • 18. Bajaj JS. The relationship between the gut microbiota and liver disease. Gastroenterology & Hepatology. 2015;11(9):626-29.
  • 19. Shi M, Wei Y, Hu W, Nie Y, Wu X Lu R. The subgingival microbiome of periodontal pockets with different probing depths in chronic and aggressive periodontitis: A pilot study. Front Cell Infect Microbiol. 2018;8:124.
  • 20. Castro-Nallar E, Bendall ML, Pérez-Losada M, Sabuncyan S, Severance EG, Dickerson FB, et al. Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls. PeerJ. 2015;3:1140.
  • 21. Harach T, Marungruang N, Dutilleul N, Cheatham V, Mc Coy KD, Frisoni G, et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Scientific Reports. 2017;7:41802.
  • 22. Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, et al. Colonic bacterial composition in Parkinson’s disease. Mov Disord. 2015;30:1351–60.
  • 23. Dunlop AL, Mulle JG, Ferranti EP, Edwards S, Dunn AB, Corwin EJ. Maternal microbiome and pregnancy outcomes that impact infant health: A review. Adv Neonatal Care. 2015;15:377–85.
  • 24. Cunha AJ, Leite ÁJ, Almeida IS. The pediatrician’s role in the first thousand days of the child: The pursuit of healthy nutrition and development. J Pediatr (Rio J). 2015;91(6):44-51.
  • 25. Amenyogbe N, Kollmann TR, Ben-Othman R. Early-life host-microbiome interphase: The key frontier for immune development. Front Pediatr. 2017;24(5):111.
  • 26. Duncan SH, Louis P, Flint HJ. Cultivable bacterial diversity from the human colon. Lett Appl Microbiol. 2007;44:343–50.
  • 27. Decker E, Engelmann G, Findeisen A, Gerner P, Laass M, Ney D, Posovszky C, Hoy L, et al. Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Pediatrics. 2010;125:1433–40.
  • 28. Hyman RW, Fukushima M, Jiang H, Fung E, Rand L, Johnson B, Vo KC, et al. Diversity of the vaginal microbiome correlates with preterm birth. Reprod Sci. 2014;21:32–40.
  • 29. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6:237.
  • 30. Jost T, Lacroix C, Braegger CP, Chassard C. New insights in gut microbiota establishment in healthy breast fed neonates. PloS One. 2012;7:44595.
  • 31. Sirota I, Zarek SM, Segars JH. Potential Influence of the microbiome on infertility and assisted reproductive technology. Semin Reprod Med. 2014;32(1):35–42.
  • 32. Aagaard K, Riehle K, Ma Jun, Segata N, Mistretta TA, Coarfa C, et al. A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PloS One. 2012;7:36466.
  • 33. Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Nikita L, et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome. 2014;2:4.
  • 34. Reid, G, Younes JA, Van der Mei HC, Gloor GB, Knight R, Busscher HJ, et al. Microbiota restoration: natural and supplemented recovery of human microbial communities. Nature reviews. Microbiology. 2010;9:27–38.
  • 35. DiGuilio DB, Romero R, Kusanovic JP. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am J Reprod Immunol. 2010;64:38–57.
  • 36. Taylor BD, Darville T, Haggerty CL. Does bacterial vaginosis cause pelvic infl ammatory disease?. Sex Transm Dis. 2013;40(2):117-22.
  • 37. Beruchashvili M, Gogiashvili L, Datunashvili E, Topuria Z, Tsagareli Z. Morphological peculiarities of endometrium in chronic endometritis associated with bacterial vaginosis. Georgian Med News. 2010;181:59-63.
  • 38. Sirota I, Zarek SM, Segars JH. Potential Influence of the Microbiome on Infertility and Assisted Reproductive Technology. Semin Reprod Med. 2014;32(1):35–42.
  • 39. Van Oostrum N, De Sutter P, Meys J, Verstraelen H. Risks associated with bacterial vaginosis in infertility patients: a systematic review and meta-analysis. Hum Reprod. 2013;28(7):1809-15.
  • 40. Haahr T, Jensen JS, Thomsen L, Duus L, Rygaard K, Humaidan P. Abnormal vaginal microbiota may be associated with poor reproductive outcomes: A prospective study in IVF patients. Hum Reprod. 2016;31(4):795-803.
  • 41. Salah RM, Allam AM, Magdy AM, Mohamed ASH. Bacterial vaginosis and infertility: cause or association? Eur J Obstet Gynecol Reprod Biol. 2013;167(1):59-63.
  • 42. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.
  • 43. Rigon G, Vallone C, Lucantoni V, Signore F. Maternal factors pre- and during delivery contribute to gut microbiota shaping in newborns. Front Cell Infect Microbiol. 2012;2:93.
  • 44. Goedert JJ, Hua X, Yu G, Shi J. Diversity and composition of the adult fecal microbiome associated with history of cesarean birth or appendectomy: Analysis of the American Gut Project. EBioMedicine. 2014;1(2-3):167–72.
  • 45. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A, Gonzalez A, Clemente JC. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med. 2016;22(6):250–53.
  • 46. Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(6):690–703.
  • 47. Nagpal R, Tsuji H, Takahashi T, Kawashima K, Nagata S, Nomoto K, et al. Sensitive Quantitative Analysis of the Meconium Bacterial Microbiota in Healthy Term Infants Born Vaginally or by Cesarean Section. Front Microbiol. 2016;7:1997.
  • 48. Smaill FM, Grivell RM. Antibiotic prophylaxis versus no prophylaxis for preventing infection after cesarean section. Cochrane Database Syst Rev. 2014;(10):7482.
  • 49. Prior E, Santhakumaran S, Gale C, Philipps LH, Modi N, Hyde MJ. Breastfeeding after cesarean delivery: A systematic review and meta-analysis of world literature. Am J Clin Nutr. 2012;95(5):1113–35.
  • 50. Karlstrom A, Lindgren H, Hildingsson I. Maternal and infant outcome after caesarean section without recorded medical indication: findings from a Swedish case-control study. BJOG. 2013;120(4):479–86.
  • 51. Jost T, Lacroix C, Braegger CP, Chassard C. New insights in gut microbiota establishment in healthy breast fed neonates. PloS One. 2012;7(8):445-95.
  • 52. Jeurink PV, Bergenhenegouwen J, Jiménez E, Knippels LM, Fernández L,Garssen J, et al. Human milk: a source of more life than we imagine. Benef Microbes. 2013;4(1):17-30.
  • 53. Hunt KM, Foster JA, Forney LJ, Schütte UM, Beck DL, Abdo Z, et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One. 2011;6:21313.
  • 54. World Health Organization. Breastfeeding [Internet]. 2016 [Erişim Tarihi 10 Mart 2019] Erişim adresi: https://www.who.int/health-topics/breastfeeding#tab=tab_3
  • 55. Türkiye Nüfus ve Sağlık Araştırması (TNSA). Beslenme Durumu ve Çocuk Sağlığı. Ankara: Hacettepe Üniversitesi Nüfus Etütleri Enstitüsü [Internet]. 2018 [Erişim Tarihi 09 Mart 2020] Erişim adresi: http://www.hips.hacettepe.edu.tr/tnsa2018/analiz.shtml
  • 56. Ho NT, Li F, Lee-Sarwar KA, Tun HM, Brown BP, Pannaraj PS, et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat Commun. 2018;9(1):1-13.
  • 57. Pannaraj PS, Li F, Cerini C, Bender JM, Yang S, Rollie A, et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA pediatrics. 2017;171(7):647-54.
  • 58. Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012; 96(3):544–51. cultural competence. Online Journal of Issues in Nursing. 2011;16(2):544-51.
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Articles
Authors

Hatice Güdül Öz This is me 0000-0001-7300-5126

Hatice Balcı Yangın This is me 0000-0002-2827-1481

Publication Date November 30, 2020
Submission Date April 27, 2019
Published in Issue Year 2020

Cite

Vancouver Güdül Öz H, Balcı Yangın H. En Önemli Miras Anne Mikrobiyotası. HUHEMFAD. 2020;7(3):285-91.