Research Article
BibTex RIS Cite

SUPPLY CHAIN OPTIMIZATION USING FUZZY GOAL PROGRAMMING: AN APPLICATION IN TEXTILE INDUSTRY

Year 2015, Volume: 33 Issue: 1, 77 - 98, 31.03.2015
https://doi.org/10.17065/huiibf.66638

Abstract

Uncertain conditions complicate to
achieve correct results by classical logic which do not deal with uncertainties.
Fuzzy logic system which was come up with L. Zadeh in 1960s, renews classical
logic. In these days fuzzy logic applications are widely used for complex
problems that include uncertainty. There are also uncertinities in supply chain
management and this denotes that supply chain management would be an
application area for fuzzy logic. In this study a fuzzy goal programming model
has been developed 
so as to model and
optimize the supply chain of a business operating under uncertain demand
conditions. The model that aims to minimize total costs and quantity of
rejected products, was solved by using real data derived from a textile company.

References

  • Ayuso, A.A., L.F. Escudero, A. Garin, M.T. Ortuno, G. (Perez 2003) An Approach for Strategic Supply Chain Planning Under Uncertainty Based on Stochastic 0-1 Programming, Journal of Global Optimization, 26, 97-124.
  • Azaron, A., K.N. Brown, S.A. Tarim, M. Modarres (2008) A Multi-Objective Stochastic Programming Approach for Supply Chain Design Considering Risk, International Journal of Production Economics, 116, 129-138.
  • Bidhandi, H.M., R.M. Yusuf, (2011) Integrated Supply Chain Planning Under Uncertainty Using an Improved Stochastic Approach, Applied Mathematical Modelling, 35, 2618- 2630.
  • Bilgen, B. (2010) Application of Fuzzy Mathematical Programming Approach to the Production Allocation and Distribution Supply Chain Network Problem, Expert Systems with Applications, 37 (6), 4488-4495.
  • Bit, A.K., M.P. Biswal, S.S. Alam (1993) An Additive Fuzzy Programming Model For Multiobjective Transportation Problem, Fuzzy Sets and Systems, 57(3), 313-319.
  • Chen, C.L., W.C., Lee. (2004) Multi- Objective Optimization of Multi Echelon Supply Chain Networks With Uncertain Product Demand and Prices, Computers and Chemical Engineering, 28, 1131-1144.
  • Chen, C.L., B.W. Wang, W.C. Lee (2003) The Optimal Profit Distribution Problem in a Multi- Echelon Supply Chain Network: A Fuzzy Optimization Approach. Lecture Notes in Artificial Intelligence Springer-Verlang Berlin Heidelberg, 2773, 1289-1295.
  • Cohen, M.A., H.L. Lee (1988) Strategic Anaysis of Integrated Production Distribution Systems: Models and Methods, Operations Research, 36 (2), 216-228.
  • Dubois, D., H. Fargier, P. Fortemps (2003) Fuzzy Scheduling: Modelling Flexible Constraints vs. Coping With Incomplete Knowledge, European Journal of Operational Research, 147 (2), 231–252.
  • France, R.B., E. Jones, C.N. Richards, J.P. Carison (2010) Multi-Objective Stochastic Supply Chain Modelling to Evaluate Tradeoffs Between Profit and Quality, International Journal of Production Economics, 127(2), 292-299.
  • Gullien, G., F.D. Mele., M.C. Bagajewicz, A. Espuna, L. Puigjaner (2005) Multiobjective Supply Chain Design Under Uncertainty, Chemical Engineering Science, 60(6), 1535- 1553.
  • Jolai, E., J. Razmi, Rostami, N.K.M. (2011) A Fuzzy Goal Programming and Meta Heuristic Algorithms for Solving Integrated Production: Distribution Planning Problem, Central European Journal of Operations Research, 19(4), 547-569.
  • Kabak, Ö., F. Ülengin (2011) Possibilistic Linear-Programming Approach for Supply Chain Networking Decisions, European Journal of Operational Research, 209, 253– 264.
  • Lababidi, H.M.S., M.A. Ahmed, I.M. Alatiqi, A.F. Al-Enzi (2004) Optimizing the Supply Chain of a Petrochemical Company under Uncertain Operating and Economic Conditions, Industrial & Engineering Chemistry Research, 43(1), 63-73.
  • Lai, Y.J., C.L. Hwang (1992) Fuzzy Mathematical Programming: Methods and Applications, NewYork: Springer.
  • Liang, T.F. (2006) Distribution Planning Decisions Using Interactive Multi Objective Linear Programming, Fuzzy Sets and Systems, 157, 1303-1316.
  • Liang, T.F. (2008) Fuzzy Multi-Objective Production/Distribution Planning Decisions With Multi-Product And Multi-Time Period In A Supply Chai, Computers & Industrial Engineering, 55, 676–694.
  • Liang, T.F. (2011) Application Of Fuzzy Sets To Manufacturing/Distribution Planning Decisions in Supply Chains, Information Sciences, 181, 842–854.
  • Özkan, M.M. (2003) Bulanık Hedef Programlama, Bursa: Ekin Kitabevi.
  • Paksoy, T., E. Özceylan, G.W. Weber (2010a) A Multi-Objective Mixed Integer Programming Model For Multi Echelon Supply Chain Network Design and Optimization, System Research and Information Technologies, 4, 47-57.
  • Paksoy, T., Yapıcı Pehlivan, N., E. Özceylan (2010b) Fuzzy Multi-Objective Mixed Integer Programming Model for Multi Echelon Supply Chain Network Design, 3.rd Conference on Nonlinear Science and Complexity, Düzenleyen Çankaya Üniversitesi, Ankara, 28-31 Temmuz 2010.
  • Peidro, D., P. Vasant, 2011 Transportation Planning With Modified S-Curve Membership Functions Using an Interactive Fuzzy Multi-Objective Approach, Applied Soft Computing, 11, 2656-2663.
  • Peidro, D., J. Mula, M. Jimenez, M.M. Botella (2010) A Fuzzy Linear Programming Based Approach for Tactical Supply Chain Planning in an Uncertinity Environment, European Journal of Operational Research, 205, 65-80.
  • Peidro, D., J. Mula, R. Poler, J.L. Verdagay (2009) Fuzzy Optimization for Supply Chain Planning Under Supply, Demand and Process Uncertainties, Fuzzy Sets and Systems, 160, 2640-2657.
  • Petrovic, D., R. Roy, R. Petrovic, (1999) Supply Chain Modelling Using Fuzzy Sets, International Journal of Production Economics, 59, 443-453.
  • Ramik, J. (2000) Fuzzy Goals and Fuzzy Alternatives in Goal Programming Problems, Fuzzy Sets and Systems, 111, 81-86.
  • Santoso, T., S. Ahmed, M. Goetschalckx, A. Shapiro (2005) A Stochastic Programming Approach for Supply Chain Network Design Under Uncertainty, European Journal of Operational Research, 167, 96-115. 100

BULANIK HEDEF PROGRAMLAMA İLE TEDARİK ZİNCİRİ OPTİMİZASYONU: TEKSTİL SEKTÖRÜNDE BİR UYGULAMA

Year 2015, Volume: 33 Issue: 1, 77 - 98, 31.03.2015
https://doi.org/10.17065/huiibf.66638

Abstract

Belirsiz koşullar, belirsizlik ile ilgilenmeyen klasik yöntemlerle doğru sonuçlara varmayı zorlaştırmaktadır. 1960’lı yıllarda L. Zadeh tarafından ortaya atılan bulanık mantık sistemi, klasik mantığın bu eksiğini kapatmaktadır. Bulanık mantık uygulamaları günümüzde belirsizlik içeren karmaşık problemlerin çözümünde yaygın olarak kullanılmaktadır. Tedarik zinciri yönetiminde de farklı alanlarda belirsizlikler bulunmaktadır ve bu da tedarik zinciri yönetiminin bulanık mantığın bir uygulama alanı olabileceğini göstermektedir. Bu çalışmada belirsiz talep koşullarında faaliyet gösteren bir işletmenin tedarik zincirinin modellenmesi ve optimizasyonu amacıyla bulanık hedef programlama modeli oluşturulmuştur. Tedarik zincirinde toplam maliyetin ve geri dönen ürün miktarının minimizasyonunu hedefleyen model, bir tekstil işletmesinden alınan gerçek veriler ile çözülmüştür.

References

  • Ayuso, A.A., L.F. Escudero, A. Garin, M.T. Ortuno, G. (Perez 2003) An Approach for Strategic Supply Chain Planning Under Uncertainty Based on Stochastic 0-1 Programming, Journal of Global Optimization, 26, 97-124.
  • Azaron, A., K.N. Brown, S.A. Tarim, M. Modarres (2008) A Multi-Objective Stochastic Programming Approach for Supply Chain Design Considering Risk, International Journal of Production Economics, 116, 129-138.
  • Bidhandi, H.M., R.M. Yusuf, (2011) Integrated Supply Chain Planning Under Uncertainty Using an Improved Stochastic Approach, Applied Mathematical Modelling, 35, 2618- 2630.
  • Bilgen, B. (2010) Application of Fuzzy Mathematical Programming Approach to the Production Allocation and Distribution Supply Chain Network Problem, Expert Systems with Applications, 37 (6), 4488-4495.
  • Bit, A.K., M.P. Biswal, S.S. Alam (1993) An Additive Fuzzy Programming Model For Multiobjective Transportation Problem, Fuzzy Sets and Systems, 57(3), 313-319.
  • Chen, C.L., W.C., Lee. (2004) Multi- Objective Optimization of Multi Echelon Supply Chain Networks With Uncertain Product Demand and Prices, Computers and Chemical Engineering, 28, 1131-1144.
  • Chen, C.L., B.W. Wang, W.C. Lee (2003) The Optimal Profit Distribution Problem in a Multi- Echelon Supply Chain Network: A Fuzzy Optimization Approach. Lecture Notes in Artificial Intelligence Springer-Verlang Berlin Heidelberg, 2773, 1289-1295.
  • Cohen, M.A., H.L. Lee (1988) Strategic Anaysis of Integrated Production Distribution Systems: Models and Methods, Operations Research, 36 (2), 216-228.
  • Dubois, D., H. Fargier, P. Fortemps (2003) Fuzzy Scheduling: Modelling Flexible Constraints vs. Coping With Incomplete Knowledge, European Journal of Operational Research, 147 (2), 231–252.
  • France, R.B., E. Jones, C.N. Richards, J.P. Carison (2010) Multi-Objective Stochastic Supply Chain Modelling to Evaluate Tradeoffs Between Profit and Quality, International Journal of Production Economics, 127(2), 292-299.
  • Gullien, G., F.D. Mele., M.C. Bagajewicz, A. Espuna, L. Puigjaner (2005) Multiobjective Supply Chain Design Under Uncertainty, Chemical Engineering Science, 60(6), 1535- 1553.
  • Jolai, E., J. Razmi, Rostami, N.K.M. (2011) A Fuzzy Goal Programming and Meta Heuristic Algorithms for Solving Integrated Production: Distribution Planning Problem, Central European Journal of Operations Research, 19(4), 547-569.
  • Kabak, Ö., F. Ülengin (2011) Possibilistic Linear-Programming Approach for Supply Chain Networking Decisions, European Journal of Operational Research, 209, 253– 264.
  • Lababidi, H.M.S., M.A. Ahmed, I.M. Alatiqi, A.F. Al-Enzi (2004) Optimizing the Supply Chain of a Petrochemical Company under Uncertain Operating and Economic Conditions, Industrial & Engineering Chemistry Research, 43(1), 63-73.
  • Lai, Y.J., C.L. Hwang (1992) Fuzzy Mathematical Programming: Methods and Applications, NewYork: Springer.
  • Liang, T.F. (2006) Distribution Planning Decisions Using Interactive Multi Objective Linear Programming, Fuzzy Sets and Systems, 157, 1303-1316.
  • Liang, T.F. (2008) Fuzzy Multi-Objective Production/Distribution Planning Decisions With Multi-Product And Multi-Time Period In A Supply Chai, Computers & Industrial Engineering, 55, 676–694.
  • Liang, T.F. (2011) Application Of Fuzzy Sets To Manufacturing/Distribution Planning Decisions in Supply Chains, Information Sciences, 181, 842–854.
  • Özkan, M.M. (2003) Bulanık Hedef Programlama, Bursa: Ekin Kitabevi.
  • Paksoy, T., E. Özceylan, G.W. Weber (2010a) A Multi-Objective Mixed Integer Programming Model For Multi Echelon Supply Chain Network Design and Optimization, System Research and Information Technologies, 4, 47-57.
  • Paksoy, T., Yapıcı Pehlivan, N., E. Özceylan (2010b) Fuzzy Multi-Objective Mixed Integer Programming Model for Multi Echelon Supply Chain Network Design, 3.rd Conference on Nonlinear Science and Complexity, Düzenleyen Çankaya Üniversitesi, Ankara, 28-31 Temmuz 2010.
  • Peidro, D., P. Vasant, 2011 Transportation Planning With Modified S-Curve Membership Functions Using an Interactive Fuzzy Multi-Objective Approach, Applied Soft Computing, 11, 2656-2663.
  • Peidro, D., J. Mula, M. Jimenez, M.M. Botella (2010) A Fuzzy Linear Programming Based Approach for Tactical Supply Chain Planning in an Uncertinity Environment, European Journal of Operational Research, 205, 65-80.
  • Peidro, D., J. Mula, R. Poler, J.L. Verdagay (2009) Fuzzy Optimization for Supply Chain Planning Under Supply, Demand and Process Uncertainties, Fuzzy Sets and Systems, 160, 2640-2657.
  • Petrovic, D., R. Roy, R. Petrovic, (1999) Supply Chain Modelling Using Fuzzy Sets, International Journal of Production Economics, 59, 443-453.
  • Ramik, J. (2000) Fuzzy Goals and Fuzzy Alternatives in Goal Programming Problems, Fuzzy Sets and Systems, 111, 81-86.
  • Santoso, T., S. Ahmed, M. Goetschalckx, A. Shapiro (2005) A Stochastic Programming Approach for Supply Chain Network Design Under Uncertainty, European Journal of Operational Research, 167, 96-115. 100
There are 27 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Pembe Güçlü

Ali Özdemir

Publication Date March 31, 2015
Submission Date April 2, 2015
Published in Issue Year 2015 Volume: 33 Issue: 1

Cite

APA Güçlü, P., & Özdemir, A. (2015). BULANIK HEDEF PROGRAMLAMA İLE TEDARİK ZİNCİRİ OPTİMİZASYONU: TEKSTİL SEKTÖRÜNDE BİR UYGULAMA. Hacettepe Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 33(1), 77-98. https://doi.org/10.17065/huiibf.66638
AMA Güçlü P, Özdemir A. BULANIK HEDEF PROGRAMLAMA İLE TEDARİK ZİNCİRİ OPTİMİZASYONU: TEKSTİL SEKTÖRÜNDE BİR UYGULAMA. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. March 2015;33(1):77-98. doi:10.17065/huiibf.66638
Chicago Güçlü, Pembe, and Ali Özdemir. “BULANIK HEDEF PROGRAMLAMA İLE TEDARİK ZİNCİRİ OPTİMİZASYONU: TEKSTİL SEKTÖRÜNDE BİR UYGULAMA”. Hacettepe Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi 33, no. 1 (March 2015): 77-98. https://doi.org/10.17065/huiibf.66638.
EndNote Güçlü P, Özdemir A (March 1, 2015) BULANIK HEDEF PROGRAMLAMA İLE TEDARİK ZİNCİRİ OPTİMİZASYONU: TEKSTİL SEKTÖRÜNDE BİR UYGULAMA. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 33 1 77–98.
IEEE P. Güçlü and A. Özdemir, “BULANIK HEDEF PROGRAMLAMA İLE TEDARİK ZİNCİRİ OPTİMİZASYONU: TEKSTİL SEKTÖRÜNDE BİR UYGULAMA”, Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, vol. 33, no. 1, pp. 77–98, 2015, doi: 10.17065/huiibf.66638.
ISNAD Güçlü, Pembe - Özdemir, Ali. “BULANIK HEDEF PROGRAMLAMA İLE TEDARİK ZİNCİRİ OPTİMİZASYONU: TEKSTİL SEKTÖRÜNDE BİR UYGULAMA”. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 33/1 (March 2015), 77-98. https://doi.org/10.17065/huiibf.66638.
JAMA Güçlü P, Özdemir A. BULANIK HEDEF PROGRAMLAMA İLE TEDARİK ZİNCİRİ OPTİMİZASYONU: TEKSTİL SEKTÖRÜNDE BİR UYGULAMA. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 2015;33:77–98.
MLA Güçlü, Pembe and Ali Özdemir. “BULANIK HEDEF PROGRAMLAMA İLE TEDARİK ZİNCİRİ OPTİMİZASYONU: TEKSTİL SEKTÖRÜNDE BİR UYGULAMA”. Hacettepe Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, vol. 33, no. 1, 2015, pp. 77-98, doi:10.17065/huiibf.66638.
Vancouver Güçlü P, Özdemir A. BULANIK HEDEF PROGRAMLAMA İLE TEDARİK ZİNCİRİ OPTİMİZASYONU: TEKSTİL SEKTÖRÜNDE BİR UYGULAMA. Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 2015;33(1):77-98.

Cited By

Manuscripts must conform to the requirements indicated on the last page of the Journal - Guide for Authors- and in the web page.


Privacy Statement

Names and e-mail addresses in this Journal Web page will only be used for the specified purposes of the Journal; they will not be opened for any other purpose or use by any other person.