Endoplazmik Retikulum Stresinin Tümör Sürecindeki Rolü ve Antikanser Uygulamaları
Year 2016,
Volume: 13 Issue: 1, 124 - 133, 28.04.2016
Sümeyra Çetinkaya
,
İlknur Çınar
,
Hatice Gül Dursun
Abstract
Katlanmamış ya da yanlış katlanmış proteinlerin birikimi sonucu ortaya çıkan Endoplazmik retikulum stresi,
kanser hücre çoğalması ve sağkalımı üzerinde büyük bir etkiye sahiptir. Tümör hücreleri büyümek için
etraflarında hipoksik bir çevreye ihtiyaç duyarlar ve katlanmamış protein yanıtı 'nın uyarılması bu yanıtta
kilit bir rol oynar. Kanserin stresli bir mikroçevrede oluşması ve ilerlemesi sonucunda ortaya çıkan
onkogenik transformasyon süresince hücrelerin sağkalım stratejisi olarak katlanmamış protein yanıtını
aktive edebildiği çeşitli çalışmalarla gösterilmiştir. Son zamanlarda katlanmamış protein yanıtı sinyal
moleküllerinin kanser gelişimi boyunca fonksiyonlarının belirlenmesi için çalışmalar yürütülmektedir. Elde
edilen verilerle, çeşitli onkogen ve tümör baskılayıcı genlerin katlanmamış protein yanıtı ile ilişkisi ortaya
çıkmaya devam etmektedir. Bu sinyal yolaklarının birbirlerini etkileyip etkilemediklerini anlamamıza fayda
sağlayacak detaylı çalışmalar, katlanmamış protein yanıtı ve kanser mekanizmasının açığa çıkmasında
oldukça önemlidir. Bu derlemede katlanmamış protein yanıtı aktivasyonunun hem tümörü destekleyen hem
de tümörü baskılayan rollerini anlamamıza ışık tutacak bilgilerin yanında kanser tedavisi için katlanmamış
protein yanıtını hedefleyen yeni stratejilerin neler olduğu tartışılacaktır.
References
- 1. Ackerman D, Simon MC. Hypoxia, lipids, and cancer:
surviving the harsh tumor microenvironment. Trends
Cell Biol. 2014; 24(8):472-8.
- 2. Sutherland RM, Ausserer WA, Murphy BJ, Laderoute
KR. Tumor hypoxia and heterogeneity: challenges and
opportunities for the future. Semin Radiat Oncol. 1996;
6:59–70.
- 3. Höckel M, Vaupel P. Tumor hypoxia: definitions and
current clinical, biologic, and molecular aspects. J Natl
Cancer Inst. 2001; 93(4):266-76.
- 4. Schröder M, Kaufman RJ. The mammalian unfolded
protein response. Annu Rev Biochem. 2005; 74: 739–89.
- 5. Ratcliffe PJ, O'Rourke JF, Maxwell PH, Pugh CW.
Oxygen sensing, hypoxia-inducible factor-1 and the
regulation of mammalian gene expression. J. Exp. Biol.
1998; 201, 1153-1162.
- 6. Semenza GL. Targeting HIF-1 for cancer therapy.
Nature Rev. Cancer. 2003; 3, 721–732.
- 7. Hill RP, De Jaeger K, Jang A, Cairns R. pH, hypoxia
and metastasis. Novartis Found. Symp. 2001; 240, 154-
165.
- 8. Cairns RA, Hill RP. Acute hypoxia enhances
spontaneous lymph node metastasis in an orthotopic
murine model of human cervical carcinoma. Cancer
Res. 2004; 64, 2054-2061.
- 9. Koumenis C. ER Stress, Hypoxia Tolerance and
Tumor Progression. Current Molecular Medicine. 2006;
6, 55-69.
- 10. Wouters BG, Koritzinsky M. Hypoxia signalling
through mTOR and the unfolded protein response in
cancer. Nat Rev Cancer. 2008; 8(11):851–64.
- 11. Kelly CJ, Hussien K, Fokas E, Kannan P, Shipley RJ,
Ashton TM, Stratford M, Pearson N, Muschel RJ.
Regulation of O2 consumption by the PI3K and mTOR
pathways contributes to tumor hypoxia. Radiother
Oncol. 2014;111(1):72-80.
- 12. Edinger AL, Linardic CM, Chiang GG, Thompson
CB, Abraham RT. Differential effects of rapamycin on
mammalian target of rapamycin signaling functions in
mammalian cells. Cancer Res. 2003; 63, 8451–8460.
- 13. Brugarolas J, Lei K, Hurley RL, Manning BD,
Reiling JH, Hafen E, Witters LA, et al. Regulation of
mTOR function in response to hypoxia by REDD1 and
the TSC1/TSC2 tumor suppressor complex. Genes Dev.
2004; 18, 2893–2904.
- 14. Inoki K, Zhu T, Guan K.L. TSC2 mediates cellular
energy response to control cell growth and survival.
Cell. 2003; 115, 577–590.
- 15. Walter P, Ron D. The unfolded protein response:
from stres pathway to homeostatic regulation. Science.
2011; 334, 1081–1086.
- 16. Li XC, Raghavan M. Structure and function of major
histo compatibility complex class I antigens. Curr Opin
Organ Transplant. 2010; 15(4):499–504.
- 17. Gutiérrez T, Simmen T. Endoplasmic reticulum
chaperones and oxidoreductases: critical regulators of
tumor cell survival and immuno recognition. Front
Oncol. 2014; Oct 27;4:291.
- 18. Rauschert N, Brändlein S, Holzinger E, Hensel F,
Müller-Hermelink HK, Vollmers HP. A new tumorspecific
variant of GRP78 as target for antibody-based
therapy. Lab Invest. 2008; 88(4):375–86.
- 19. Uckun FM, Qazi S, Ozer Z, Garner AL, Pitt J, Ma H,
et al. Inducing apoptosis in chemotherapy-resistant Blineage
acute lymphoblastic leukaemia cells by targeting
HSPA 5, a master regulator of the anti-apoptotic
unfolded protein response signalling network. Br J
Haematol. 2011; 153(6):741–52.
- 20. Luo B, Lee AS. The critical roles of endoplasmic
reticulum chaperones and unfolded protein response in
tumorigenesis and anticancer therapies. Oncogene.
2013; 32:805–18.
- 21. Li Z. Glucose regulated protein 78: a critical link
between tumor microenvironment and cancer hallmarks.
Biochim Biophys Acta. 2012; 1826(1):13–22.
- 22. Wang M, Kaufman RJ. The impact of the endoplasmic
reticulum protein-folding environment on cancer
development. Nat Rev Cancer. 2014;14(9):581-97.
- 23. Malhi H, Kaufman RJ. Endoplasmic reticulum stress
in liver disease. J Hepatol. 2011;54:795–809.
- 24. Schönthal AH. Pharmacological targeting of
endoplasmic reticulum stress signaling in cancer.
Biochem Pharmacol. 2013;85(5):653-66.
- 25. Ma Y, Brewer JW, Diehl JA, Hendershot LM. Two
distinct stress signaling pathways converge upon the
CHOP promoter during the mammalian unfolded protein
response. J Mol Biol. 2002; 318:1351–65.
- 26. Suzuki T, Lu J, Zahed M, Kita K, Suzuki N. Reduction
of GRP78 expression with siRNA activates unfolded
protein response leading to apoptosis in HeLa cells. Arch
Biochem Biophys. 2007;468:1–14.
- 27. McCullough KD, Martindale JL, Klotz LO, Aw TY,
Holbrook NJ. Gadd153 sensitizes cells to endoplasmic
reticulum stress by down-regulating Bcl2 and perturbing
the cellular redox state. Mol Cell Biol. 2001;21:1249–59.
- 28. Rutkowski DT, Arnold SM, Miller CN, Wu J, Li J,
Gunnison KM, et al. Adaptation to ER stress is mediated
by differential stabilities of pro-survival and proapoptotic
mRNAs and proteins. PLoS Biol. 2006;4:e374.
- 29. Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee
K, Liu CY, Arnold SM. The unfolded protein response in
nutrient sensing and differentiation. Nat. Rev. Mol. Cell.
Biol. 2002; 3: 411–421.
30. Bi M, Naczki C, Koritzinsky M, Fels D, Blais J, Hu N,
Harding H, et al. ER stress-regulated translation increases
tolerance to extreme hypoxia and promotes tumor
growth. EMBO J. 2005; 24, 3470-3481.
- 31. Bobrovnikova-Marjon E, Grigoriadou C, Pytel D,
Zhang F, Ye J, Koumenis C, Cavener D, and Diehl JA.
PERK promotes cancer cell proliferation and tumor
growth by limiting oxidative DNA damage. Oncogene.
2010; 29, 3881–3895.
- 32. Huber AL, Lebeau J, Guillaumot P, Pétrilli V, Malek
M, Chilloux J, et al. p58(IPK)-mediated attenuation of the
proapoptotic PERK-CHOP pathway allows malignant
progression upon low glucose. Mol. Cell. 2013; 49,
1049–1059.
- 33. Brewer JW, Diehl JA. PERK mediates cell-cycle exit
during the mammalianunfolded protein response. Proc
Natl Acad Sci. 2000; 97:12625–30.
- 34. Hamanaka RB, Bennett BS, Cullinan SB, Diehl JA.
PERK and GCN2 contribute to eIF2 alpha
phosphorylation and cell cycle arrest after activation of
the unfolded protein response pathway. Mol Biol Cell.
2005; 16:5493–501.
- 35.Avivar-Valderas A, Salas E, Bobrovnikova-Marjon E,
Diehl JA, Nagi C, Deb-nath J, et al. PERK integrates
autophagy and oxidative stress responsesto promote
survival during extracellular matrix detachment. Mol
Cell Biol. 2011;31:3616–29.
- 36. Köditz J, Nesper J, Wottawa M, Stiehl DP, Camenisch
G, Franke C, Myllyharju J, Wenger RH, Katschinski
DM.Oxygen-dependent ATF-4 stability is mediated by
the PHD3 oxygen sensor. Blood. 2007; 110, 3610–3617.
- 37. Scortegagna M1, Kim H1, Li JL2, Yao H3, Brill LM2,
Han J4, et al. Fine tuning of the UPR by the ubiquitin
ligases Siah1/2. PLoS Genet. 2014; 10, e1004348.
- 38. Pereira ER, Frudd K, Awad W, Hendershot LM.
Endoplasmic reticulum (ER) stress and hypoxia response
pathways interact to potentiate hypoxia-inducible factor 1
(HIF-1) transcriptional activity on targets like vascular
endothelial growth factor (VEGF). J. Biol. Chem. 2014;
289, 3352–3364.
- 39. Rouschop KM, van den Beucken T, Dubois L,
Niessen H, Bussink J, Savelkouls K, et al. The unfolded
protein response protects human tumor cells during hypoxia
through regulation of the autophagy genes MAP1LC3B and
ATG5. J. Clin. Invest. 2010; 120, 127–141.
- 40. Blais JD, Filipenko V, Bi MX, Harding HP, Ron D,
Koumenis C, et al. Activating transcription factor 4 is
translationally regulated by hypoxic stress. Mol Cell Biol.
2004; 24:7469–82.
- 41. Rouschop KM, Dubois LJ, Keulers TG, van den
Beucken T, Lambin P, Bussink J, van der Kogel, et al.
PERK/eIF2a signaling protects therapy resistant hypoxic
cells through induction of glutathione synthesis and
protection against ROS. Proc. Natl. Acad. Sci. USA. 2013;
110, 4622–4627.
- 42. Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and
free radicals regulate angiogenesis and radiotherapy
response. Nat Rev Cancer. 2008; 8:425–37.
- 43. Fujimoto T, Onda M, Nagai H, Nagahata T, Ogawa K,
Emi M. Upregulation and overexpression of human X-box
binding protein 1 (hXBP-1) gene in primary breast cancers.
Breast Cancer. 2003; 10:301-6.
- 44. Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T,
Mori K, et al. Activation of the ATF6, XBP1 and grp78
genes in human hepatocellular carcinoma: A possible
i n v o l v eme n t o f t h e ER str e ss p a t hwa y i n
hepatocarcinogenesis. Journal of Hepatology. 2003;
38:605-14.
- 45. Koong AC, Chauhan V, Romero-Ramirez L. Targeting
XBP-1 as a novel anti-cancer strategy. Cancer Biol Ther.
2006;5(7):756-9.
- 46. Xu G, Liu K, Anderson J, Patrene K, Lentzsch S,
Roodman GD, et al. Expression of XBP1s in bone marrow
stromal cells is critical for myeloma cell growth and
osteoclast formation. Blood. 2012; 119:4205–14.
- 47. Iwakoshi NN, Lee AH, Glimcher LH. The X-box
binding protein-1 transcription factor is required for plasma
cell differentiation and the unfolded protein response.
Immunol Rev. 2003; 194:29-38.
- 48. Brewer JW, Hendershot LM. Building an antibody
factory: A job for the unfolded protein response. Nat
Immunol. 2005; 6:23-9.
- 49. Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH,
Qian SB, Zhao H, et al. XBP1, downstream of Blimp-1,
expands the secretory apparatus and other organelles, and
increases protein synthesis in plasma cell differentiation.
Immunity. 2004; 21:81-93.
- 50. Lee AH, Iwakoshi NN, Anderson KC, Glimcher LH.
Proteasome inhibitors disrupt the unfolded protein response
in myeloma cells. Proc Natl Acad Sci USA. 2003;
100:9946-51.
- 51. Clarke HJ, Chambers JE, Liniker E, Marciniak SJ.
Endoplasmic reticulum stress in malignancy. Cancer Cell.
2014;25(5):563-73.
- 52. Todd DJ, Lee AH, Glimcher LH. The endoplasmic
reticulum stress response inimmunity and autoimmunity.
Nat Rev Immunol. 2008; 8:663–74.
- 53. Nagelkerke A, Bussink J, Sweep F, Paul N. Span The
unfolded protein response as a target for cancer therapy.
Biochim Biophys Acta. 2014;1846(2):277-84.
- 54. Axten JM, Medina JR, Feng Y, Shu A, Romeril SP, Grant
SW, Li WH, et al. Discovery of 7-methyl-5-(1-{[3-
(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-
yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414),
a potent and selective first-in-class inhibitor of protein
kinase R (PKR)-like endoplasmic reticulum kinase
(PERK). J. Med. Chem. 2012; 55:7193–7207.
- 55. Nagelkerke A, Sweep F.C, Stegeman H, Grenman R,
Kaanders J.H, Bussink J, Span P.N. Hypoxic regulation of
the PERK/ATF4/LAMP3-arm of the unfolded protein
response in head and neck squamous cell carcinoma. Head
Neck. 2015;37(6):896-905.
- 56. Lin JH, Li H, Zhang Y, Ron D, Walter P. Divergent
effects of PERK and IRE1 signaling on cell viability. PLoS
One. 2009; 4, e4170.
- 57. Cojocari D, Vellanki RN, Sit B, Uehling D,
Koritzinsky M, Wouters BG. New small molecule
inhibitors of UPR activation demonstrate that PERK, but
not IRE1alpha signaling is essential for promoting
adaptation and survival to hypoxia. Radiother. Oncol.
2013; 108: 541–547.
- 58. Garg AD, Nowis D, Golab J, Vandenabeele P, Krysko
DV, Agostinis P. Immunogenic cell death, DAMPs and
anticancer therapeutics: an emerging amalgamation.
Biochim Biophys Acta. 2010;1805:53-71.
- 59. Mujtaba T, Dou QP. Advances in the understanding
of mechanisms and therapeutic use of bortezomib.
Discov Med. 2011;12: 471-80.
- 60. Spisek R, Charalambous A, Mazumder A, Vesole
DH, Jagannath S, Dhodapkar MV. Bortezomib enhances
dendritic cell (DC)- mediated induction of immunity to
human myeloma via exposure of cell surface heat shock
protein 90 on dying tumor cells: therapeutic
implications. Blood. 2007;109:4839-45.
- 61. Gupta SV, Hertlein E, Lu Y, Sass EJ, Lapalombella
R, Chen TL, Davis ME, et al. The proteasome inhibitor
carfilzomib functions independently of p53 to induce
cytotoxicity and an atypical NF-κB response in chronic
lymphocytic leukemia cells. Clin Cancer Res.
2013;19(9):2406-19.
- 62. Koltai T. Nelfinavir and other protease inhibitors in
cancer: mechanisms involved in anticancer activity.
Version 2. F1000Res. 2015 Jan 12 [revised 2015 Mar
5];4:9.
- 63. Miller CP, Manton CA, Hale R, Debose L, Macherla
VR, Potts BC, Palladino MA, Chandra J. Specific and
prolonged proteasome inhibition dictates apoptosis
induction by marizomib and its analogs. Chem Biol
Interact. 2011;194(1):58-68.
- 64. Matsuo J, Tsukumo Y, Sakurai J, Tsukahara S, Park
HR, Shin-Ya K, Watanabe T,et al. Preventing the unfolded
protein response via aberrant activation of 4E-binding
protein 1 by versipelostatin, Cancer Sci. 2008; 100,
327–333.
- 65. Hu CC, Dougan SK, Winter SV, Paton AW, Paton JC,
Ploegh HL. Subtilase cytotoxin cleaves newly
synthesized BiP and blocks antibody secretion in B
lymphocytes, J. Exp. Med. 2009; 206,2429–2440.
- 66. Atkins C, Liu Q, Minthorn E, Zhang SY, Figueroa DJ,
Moss K, Stanley TB, et al. Characterization of a novel
PERK kinase inhibitor with antitumor and antiangiogenic
activity. Cancer Res. 2013; 73, 1993–2002.
- 67. Martin S, Lamb HK, Brady C, Lefkove B, Bonner
MY, Thompson P, et al. Inducing apoptosis of cancer cells
using small-molecule plant compounds that bind to
GRP78. Br J Cancer. 2013;109:433-43.
- 68. Li X, Zhang K, Li Z. Unfolded protein response in
cancer: the physician's perspective. J Hematol Oncol.
2011;23; 4:8.
- 69. Mimura N, Fulciniti M, Gorgun G, Tai YT, Cirstea D,
Santo L, et al. Blockade of XBP1 splicing by inhibition of
IRE1 alpha is a promising therapeutic option in multiple
myeloma. Blood. 2012; 119, 5772–5781.
- 70. Papandreou I, Denko NC, Olson M, Van Melckebeke H,
Lust S, Tam A, Solow-Cordero DE, et al. Identification of an
Ire1alpha endonuclease specific inhibitor with cytotoxic
activity against human multiple myeloma. Blood. 2011;
117, 1311–1314.
- 71. Healy SJ, Gorman AM, Mousavi-Shafaei P, Gupta S,
Samali A. Targeting the endoplasmic reticulum-stress
response as an anticancer strategy, Eur. J. Pharmacol. 625
(2009) 234–246.
- 72. Saito S, Furuno A, Sakurai J, Sakamoto A, Park HR,
Shin-Ya K, Tsuruo T, Tomida A. Chemical genomics
identifies the unfolded protein response as a target for
selective cancer cell killing during glucose deprivation.
Cancer Res. 2009 May 15;69(10):4225-34.
- 73. Montalbano R, Waldegger P, Quint K, Jabari S,
Neureiter D, Illig R, Ocker M, Di Fazio P. Endoplasmic
reticulum stress plays a pivotal role in cell death mediated
by the pan-deacetylase inhibitor panobinostat in human
hepatocellular cancer cells. Transl Oncol. 2013
Apr;6(2):143-57. Epub 2013 Apr 1.
- 74. Rao R, Nalluri S, Kolhe R, Yang Y, Fiskus W, Chen J, Ha
K, et al. Treatment with panobinostat induces glucoseregulated
protein 78 acetylation and endoplasmic reticulum
stress in breast cancer cells. Mol Cancer Ther. 2010
Apr;9(4):942-52.
The Role in Tumor Process of Endoplasmic Reticulum Stress and Anticancer Treatments
Year 2016,
Volume: 13 Issue: 1, 124 - 133, 28.04.2016
Sümeyra Çetinkaya
,
İlknur Çınar
,
Hatice Gül Dursun
Abstract
Endoplasmic reticulum stress resulted from accumulation of unfolded or misfolded proteins have a large
impact on proliferation and survival of cancer cell. In order to grow, tumor cells need a hypoxic environment
and stimulation of the unfolded protein response plays a key role in this response. The emergence and
progression of the cancer under stressful microenvironment lead to oncogenic transformation. Several
studies have shown that during this process, cells could activate unfolded protein response as a survival
strategy. Recent studies have focused on relationship between unfolded protein response signal molecules
and cancer development; and association between various oncogenes and tumor suppressor genes with
unfolded protein response have been emerging. Detailed studies that will help us to understand the effect of
signalling pathways on each other's, are very important to figure out the unfolded protein response and cancer
mechanism. In this review, knowledge shed light on our understanding about roles of UPR on both tumor
sustaining and suppression and also new strategies targeting unfolded protein response for the treatment of
cancer will be discussed.
References
- 1. Ackerman D, Simon MC. Hypoxia, lipids, and cancer:
surviving the harsh tumor microenvironment. Trends
Cell Biol. 2014; 24(8):472-8.
- 2. Sutherland RM, Ausserer WA, Murphy BJ, Laderoute
KR. Tumor hypoxia and heterogeneity: challenges and
opportunities for the future. Semin Radiat Oncol. 1996;
6:59–70.
- 3. Höckel M, Vaupel P. Tumor hypoxia: definitions and
current clinical, biologic, and molecular aspects. J Natl
Cancer Inst. 2001; 93(4):266-76.
- 4. Schröder M, Kaufman RJ. The mammalian unfolded
protein response. Annu Rev Biochem. 2005; 74: 739–89.
- 5. Ratcliffe PJ, O'Rourke JF, Maxwell PH, Pugh CW.
Oxygen sensing, hypoxia-inducible factor-1 and the
regulation of mammalian gene expression. J. Exp. Biol.
1998; 201, 1153-1162.
- 6. Semenza GL. Targeting HIF-1 for cancer therapy.
Nature Rev. Cancer. 2003; 3, 721–732.
- 7. Hill RP, De Jaeger K, Jang A, Cairns R. pH, hypoxia
and metastasis. Novartis Found. Symp. 2001; 240, 154-
165.
- 8. Cairns RA, Hill RP. Acute hypoxia enhances
spontaneous lymph node metastasis in an orthotopic
murine model of human cervical carcinoma. Cancer
Res. 2004; 64, 2054-2061.
- 9. Koumenis C. ER Stress, Hypoxia Tolerance and
Tumor Progression. Current Molecular Medicine. 2006;
6, 55-69.
- 10. Wouters BG, Koritzinsky M. Hypoxia signalling
through mTOR and the unfolded protein response in
cancer. Nat Rev Cancer. 2008; 8(11):851–64.
- 11. Kelly CJ, Hussien K, Fokas E, Kannan P, Shipley RJ,
Ashton TM, Stratford M, Pearson N, Muschel RJ.
Regulation of O2 consumption by the PI3K and mTOR
pathways contributes to tumor hypoxia. Radiother
Oncol. 2014;111(1):72-80.
- 12. Edinger AL, Linardic CM, Chiang GG, Thompson
CB, Abraham RT. Differential effects of rapamycin on
mammalian target of rapamycin signaling functions in
mammalian cells. Cancer Res. 2003; 63, 8451–8460.
- 13. Brugarolas J, Lei K, Hurley RL, Manning BD,
Reiling JH, Hafen E, Witters LA, et al. Regulation of
mTOR function in response to hypoxia by REDD1 and
the TSC1/TSC2 tumor suppressor complex. Genes Dev.
2004; 18, 2893–2904.
- 14. Inoki K, Zhu T, Guan K.L. TSC2 mediates cellular
energy response to control cell growth and survival.
Cell. 2003; 115, 577–590.
- 15. Walter P, Ron D. The unfolded protein response:
from stres pathway to homeostatic regulation. Science.
2011; 334, 1081–1086.
- 16. Li XC, Raghavan M. Structure and function of major
histo compatibility complex class I antigens. Curr Opin
Organ Transplant. 2010; 15(4):499–504.
- 17. Gutiérrez T, Simmen T. Endoplasmic reticulum
chaperones and oxidoreductases: critical regulators of
tumor cell survival and immuno recognition. Front
Oncol. 2014; Oct 27;4:291.
- 18. Rauschert N, Brändlein S, Holzinger E, Hensel F,
Müller-Hermelink HK, Vollmers HP. A new tumorspecific
variant of GRP78 as target for antibody-based
therapy. Lab Invest. 2008; 88(4):375–86.
- 19. Uckun FM, Qazi S, Ozer Z, Garner AL, Pitt J, Ma H,
et al. Inducing apoptosis in chemotherapy-resistant Blineage
acute lymphoblastic leukaemia cells by targeting
HSPA 5, a master regulator of the anti-apoptotic
unfolded protein response signalling network. Br J
Haematol. 2011; 153(6):741–52.
- 20. Luo B, Lee AS. The critical roles of endoplasmic
reticulum chaperones and unfolded protein response in
tumorigenesis and anticancer therapies. Oncogene.
2013; 32:805–18.
- 21. Li Z. Glucose regulated protein 78: a critical link
between tumor microenvironment and cancer hallmarks.
Biochim Biophys Acta. 2012; 1826(1):13–22.
- 22. Wang M, Kaufman RJ. The impact of the endoplasmic
reticulum protein-folding environment on cancer
development. Nat Rev Cancer. 2014;14(9):581-97.
- 23. Malhi H, Kaufman RJ. Endoplasmic reticulum stress
in liver disease. J Hepatol. 2011;54:795–809.
- 24. Schönthal AH. Pharmacological targeting of
endoplasmic reticulum stress signaling in cancer.
Biochem Pharmacol. 2013;85(5):653-66.
- 25. Ma Y, Brewer JW, Diehl JA, Hendershot LM. Two
distinct stress signaling pathways converge upon the
CHOP promoter during the mammalian unfolded protein
response. J Mol Biol. 2002; 318:1351–65.
- 26. Suzuki T, Lu J, Zahed M, Kita K, Suzuki N. Reduction
of GRP78 expression with siRNA activates unfolded
protein response leading to apoptosis in HeLa cells. Arch
Biochem Biophys. 2007;468:1–14.
- 27. McCullough KD, Martindale JL, Klotz LO, Aw TY,
Holbrook NJ. Gadd153 sensitizes cells to endoplasmic
reticulum stress by down-regulating Bcl2 and perturbing
the cellular redox state. Mol Cell Biol. 2001;21:1249–59.
- 28. Rutkowski DT, Arnold SM, Miller CN, Wu J, Li J,
Gunnison KM, et al. Adaptation to ER stress is mediated
by differential stabilities of pro-survival and proapoptotic
mRNAs and proteins. PLoS Biol. 2006;4:e374.
- 29. Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee
K, Liu CY, Arnold SM. The unfolded protein response in
nutrient sensing and differentiation. Nat. Rev. Mol. Cell.
Biol. 2002; 3: 411–421.
30. Bi M, Naczki C, Koritzinsky M, Fels D, Blais J, Hu N,
Harding H, et al. ER stress-regulated translation increases
tolerance to extreme hypoxia and promotes tumor
growth. EMBO J. 2005; 24, 3470-3481.
- 31. Bobrovnikova-Marjon E, Grigoriadou C, Pytel D,
Zhang F, Ye J, Koumenis C, Cavener D, and Diehl JA.
PERK promotes cancer cell proliferation and tumor
growth by limiting oxidative DNA damage. Oncogene.
2010; 29, 3881–3895.
- 32. Huber AL, Lebeau J, Guillaumot P, Pétrilli V, Malek
M, Chilloux J, et al. p58(IPK)-mediated attenuation of the
proapoptotic PERK-CHOP pathway allows malignant
progression upon low glucose. Mol. Cell. 2013; 49,
1049–1059.
- 33. Brewer JW, Diehl JA. PERK mediates cell-cycle exit
during the mammalianunfolded protein response. Proc
Natl Acad Sci. 2000; 97:12625–30.
- 34. Hamanaka RB, Bennett BS, Cullinan SB, Diehl JA.
PERK and GCN2 contribute to eIF2 alpha
phosphorylation and cell cycle arrest after activation of
the unfolded protein response pathway. Mol Biol Cell.
2005; 16:5493–501.
- 35.Avivar-Valderas A, Salas E, Bobrovnikova-Marjon E,
Diehl JA, Nagi C, Deb-nath J, et al. PERK integrates
autophagy and oxidative stress responsesto promote
survival during extracellular matrix detachment. Mol
Cell Biol. 2011;31:3616–29.
- 36. Köditz J, Nesper J, Wottawa M, Stiehl DP, Camenisch
G, Franke C, Myllyharju J, Wenger RH, Katschinski
DM.Oxygen-dependent ATF-4 stability is mediated by
the PHD3 oxygen sensor. Blood. 2007; 110, 3610–3617.
- 37. Scortegagna M1, Kim H1, Li JL2, Yao H3, Brill LM2,
Han J4, et al. Fine tuning of the UPR by the ubiquitin
ligases Siah1/2. PLoS Genet. 2014; 10, e1004348.
- 38. Pereira ER, Frudd K, Awad W, Hendershot LM.
Endoplasmic reticulum (ER) stress and hypoxia response
pathways interact to potentiate hypoxia-inducible factor 1
(HIF-1) transcriptional activity on targets like vascular
endothelial growth factor (VEGF). J. Biol. Chem. 2014;
289, 3352–3364.
- 39. Rouschop KM, van den Beucken T, Dubois L,
Niessen H, Bussink J, Savelkouls K, et al. The unfolded
protein response protects human tumor cells during hypoxia
through regulation of the autophagy genes MAP1LC3B and
ATG5. J. Clin. Invest. 2010; 120, 127–141.
- 40. Blais JD, Filipenko V, Bi MX, Harding HP, Ron D,
Koumenis C, et al. Activating transcription factor 4 is
translationally regulated by hypoxic stress. Mol Cell Biol.
2004; 24:7469–82.
- 41. Rouschop KM, Dubois LJ, Keulers TG, van den
Beucken T, Lambin P, Bussink J, van der Kogel, et al.
PERK/eIF2a signaling protects therapy resistant hypoxic
cells through induction of glutathione synthesis and
protection against ROS. Proc. Natl. Acad. Sci. USA. 2013;
110, 4622–4627.
- 42. Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and
free radicals regulate angiogenesis and radiotherapy
response. Nat Rev Cancer. 2008; 8:425–37.
- 43. Fujimoto T, Onda M, Nagai H, Nagahata T, Ogawa K,
Emi M. Upregulation and overexpression of human X-box
binding protein 1 (hXBP-1) gene in primary breast cancers.
Breast Cancer. 2003; 10:301-6.
- 44. Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T,
Mori K, et al. Activation of the ATF6, XBP1 and grp78
genes in human hepatocellular carcinoma: A possible
i n v o l v eme n t o f t h e ER str e ss p a t hwa y i n
hepatocarcinogenesis. Journal of Hepatology. 2003;
38:605-14.
- 45. Koong AC, Chauhan V, Romero-Ramirez L. Targeting
XBP-1 as a novel anti-cancer strategy. Cancer Biol Ther.
2006;5(7):756-9.
- 46. Xu G, Liu K, Anderson J, Patrene K, Lentzsch S,
Roodman GD, et al. Expression of XBP1s in bone marrow
stromal cells is critical for myeloma cell growth and
osteoclast formation. Blood. 2012; 119:4205–14.
- 47. Iwakoshi NN, Lee AH, Glimcher LH. The X-box
binding protein-1 transcription factor is required for plasma
cell differentiation and the unfolded protein response.
Immunol Rev. 2003; 194:29-38.
- 48. Brewer JW, Hendershot LM. Building an antibody
factory: A job for the unfolded protein response. Nat
Immunol. 2005; 6:23-9.
- 49. Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH,
Qian SB, Zhao H, et al. XBP1, downstream of Blimp-1,
expands the secretory apparatus and other organelles, and
increases protein synthesis in plasma cell differentiation.
Immunity. 2004; 21:81-93.
- 50. Lee AH, Iwakoshi NN, Anderson KC, Glimcher LH.
Proteasome inhibitors disrupt the unfolded protein response
in myeloma cells. Proc Natl Acad Sci USA. 2003;
100:9946-51.
- 51. Clarke HJ, Chambers JE, Liniker E, Marciniak SJ.
Endoplasmic reticulum stress in malignancy. Cancer Cell.
2014;25(5):563-73.
- 52. Todd DJ, Lee AH, Glimcher LH. The endoplasmic
reticulum stress response inimmunity and autoimmunity.
Nat Rev Immunol. 2008; 8:663–74.
- 53. Nagelkerke A, Bussink J, Sweep F, Paul N. Span The
unfolded protein response as a target for cancer therapy.
Biochim Biophys Acta. 2014;1846(2):277-84.
- 54. Axten JM, Medina JR, Feng Y, Shu A, Romeril SP, Grant
SW, Li WH, et al. Discovery of 7-methyl-5-(1-{[3-
(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-
yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414),
a potent and selective first-in-class inhibitor of protein
kinase R (PKR)-like endoplasmic reticulum kinase
(PERK). J. Med. Chem. 2012; 55:7193–7207.
- 55. Nagelkerke A, Sweep F.C, Stegeman H, Grenman R,
Kaanders J.H, Bussink J, Span P.N. Hypoxic regulation of
the PERK/ATF4/LAMP3-arm of the unfolded protein
response in head and neck squamous cell carcinoma. Head
Neck. 2015;37(6):896-905.
- 56. Lin JH, Li H, Zhang Y, Ron D, Walter P. Divergent
effects of PERK and IRE1 signaling on cell viability. PLoS
One. 2009; 4, e4170.
- 57. Cojocari D, Vellanki RN, Sit B, Uehling D,
Koritzinsky M, Wouters BG. New small molecule
inhibitors of UPR activation demonstrate that PERK, but
not IRE1alpha signaling is essential for promoting
adaptation and survival to hypoxia. Radiother. Oncol.
2013; 108: 541–547.
- 58. Garg AD, Nowis D, Golab J, Vandenabeele P, Krysko
DV, Agostinis P. Immunogenic cell death, DAMPs and
anticancer therapeutics: an emerging amalgamation.
Biochim Biophys Acta. 2010;1805:53-71.
- 59. Mujtaba T, Dou QP. Advances in the understanding
of mechanisms and therapeutic use of bortezomib.
Discov Med. 2011;12: 471-80.
- 60. Spisek R, Charalambous A, Mazumder A, Vesole
DH, Jagannath S, Dhodapkar MV. Bortezomib enhances
dendritic cell (DC)- mediated induction of immunity to
human myeloma via exposure of cell surface heat shock
protein 90 on dying tumor cells: therapeutic
implications. Blood. 2007;109:4839-45.
- 61. Gupta SV, Hertlein E, Lu Y, Sass EJ, Lapalombella
R, Chen TL, Davis ME, et al. The proteasome inhibitor
carfilzomib functions independently of p53 to induce
cytotoxicity and an atypical NF-κB response in chronic
lymphocytic leukemia cells. Clin Cancer Res.
2013;19(9):2406-19.
- 62. Koltai T. Nelfinavir and other protease inhibitors in
cancer: mechanisms involved in anticancer activity.
Version 2. F1000Res. 2015 Jan 12 [revised 2015 Mar
5];4:9.
- 63. Miller CP, Manton CA, Hale R, Debose L, Macherla
VR, Potts BC, Palladino MA, Chandra J. Specific and
prolonged proteasome inhibition dictates apoptosis
induction by marizomib and its analogs. Chem Biol
Interact. 2011;194(1):58-68.
- 64. Matsuo J, Tsukumo Y, Sakurai J, Tsukahara S, Park
HR, Shin-Ya K, Watanabe T,et al. Preventing the unfolded
protein response via aberrant activation of 4E-binding
protein 1 by versipelostatin, Cancer Sci. 2008; 100,
327–333.
- 65. Hu CC, Dougan SK, Winter SV, Paton AW, Paton JC,
Ploegh HL. Subtilase cytotoxin cleaves newly
synthesized BiP and blocks antibody secretion in B
lymphocytes, J. Exp. Med. 2009; 206,2429–2440.
- 66. Atkins C, Liu Q, Minthorn E, Zhang SY, Figueroa DJ,
Moss K, Stanley TB, et al. Characterization of a novel
PERK kinase inhibitor with antitumor and antiangiogenic
activity. Cancer Res. 2013; 73, 1993–2002.
- 67. Martin S, Lamb HK, Brady C, Lefkove B, Bonner
MY, Thompson P, et al. Inducing apoptosis of cancer cells
using small-molecule plant compounds that bind to
GRP78. Br J Cancer. 2013;109:433-43.
- 68. Li X, Zhang K, Li Z. Unfolded protein response in
cancer: the physician's perspective. J Hematol Oncol.
2011;23; 4:8.
- 69. Mimura N, Fulciniti M, Gorgun G, Tai YT, Cirstea D,
Santo L, et al. Blockade of XBP1 splicing by inhibition of
IRE1 alpha is a promising therapeutic option in multiple
myeloma. Blood. 2012; 119, 5772–5781.
- 70. Papandreou I, Denko NC, Olson M, Van Melckebeke H,
Lust S, Tam A, Solow-Cordero DE, et al. Identification of an
Ire1alpha endonuclease specific inhibitor with cytotoxic
activity against human multiple myeloma. Blood. 2011;
117, 1311–1314.
- 71. Healy SJ, Gorman AM, Mousavi-Shafaei P, Gupta S,
Samali A. Targeting the endoplasmic reticulum-stress
response as an anticancer strategy, Eur. J. Pharmacol. 625
(2009) 234–246.
- 72. Saito S, Furuno A, Sakurai J, Sakamoto A, Park HR,
Shin-Ya K, Tsuruo T, Tomida A. Chemical genomics
identifies the unfolded protein response as a target for
selective cancer cell killing during glucose deprivation.
Cancer Res. 2009 May 15;69(10):4225-34.
- 73. Montalbano R, Waldegger P, Quint K, Jabari S,
Neureiter D, Illig R, Ocker M, Di Fazio P. Endoplasmic
reticulum stress plays a pivotal role in cell death mediated
by the pan-deacetylase inhibitor panobinostat in human
hepatocellular cancer cells. Transl Oncol. 2013
Apr;6(2):143-57. Epub 2013 Apr 1.
- 74. Rao R, Nalluri S, Kolhe R, Yang Y, Fiskus W, Chen J, Ha
K, et al. Treatment with panobinostat induces glucoseregulated
protein 78 acetylation and endoplasmic reticulum
stress in breast cancer cells. Mol Cancer Ther. 2010
Apr;9(4):942-52.