Research Article
BibTex RIS Cite

Şanlıurfa’daki Prostat Kanseri Hastalarında VGSC’lerin İmmünohistokimyasal Olarak İncelenmesi

Year 2017, Issue: 3 - -Vol14, No 3; (Supll:1) IONCC 2017 Special edition, 23 - 30, 30.12.2017

Abstract

Amaç: Bu çalışmada, genitoüriner sistem
rahatsızlıkları nedeniyle Şanlıurfa'daki Harran
Üniversitesi Tıp Fakültesi Hastanesi ve Mehmet Akif
İnan Eğitim ve Araştırma Hastanesi’ne başvuran bazı
hastalardan alınmış prostat doku örneklerinde Nav1.7
geni tarafından kodlanan proteinin varlığının
araştırılması amaçlanmıştır.
Materyal ve Metod: Çalışmada, tanı konulmuş
(benign prostatik hiperplazi, prostatik intraepitelyal
neoplazi, metastatik olmayan prostat kanseri ve
metastatik prostat kanseri) 20 hastaya ait prostat
dokusu örnekleri ve dört normal prostat kullanıldı.
Harran Üniversitesi Tıp Fakültesi Hastanesi ile
Mehmet Akif İnan Eğitim ve Araştırma Hastanesi'nin
Patoloji arşivlerinden alınan bu numuneler 2012–2014
yıllarına aittir. İşaretleme için anti-sodyum kanalı
Nav1.7 monoklonal antikor (Millipore, Merck, ABD)
kullanıldı. Pozitif kontrol olarak, üretici firmanın
önerisine göre, sıçan beyincik dokusu ile çalışıldı.
İmmunohistokimyasal boyama işlemi otomatik
immünhistokimya cihazında (Ventana, Roche, ABD)
yapıldı.
Bulgular: Primer antikor uygulanmayan negatif
kontrol kesitlerinde boyanma olmadı. Pozitif kontrol
ile karşılaştırıldığında prostat doku örneklerinde
(normal prostat dokusu, benign prostatik hiperplazi,
prostatik intraepitelyal neoplazi dokusu, metastatik
olmayan prostat kanseri ve metastatik prostat kanseri)
dikkate değer bir boyanma gerçekleşmediği
gözlemlendi.
Sonuç: Nav1.7 geni tarafından kodlanan VGSC
proteini, normal prostat ve benign prostat hiperplazisi
yanı sıra prostatik intraepitelyal neoplazi, metastatik
olmayan prostat kanseri ve metastatik prostat kanseri
gibi farklı derecelerde kanser bulunan hastalarda
immünohistokimyasal olarak gösterilememiştir.
İncelemeler, diğer genler tarafından kodlanan
VGSC'lere karşı üretilmiş çeşitli antikorlarla
işaretlenerek sürdürülmelidir. Ayrıca bulgular diğer
moleküler tekniklerle de doğrulanmalıdır.

References

  • 1. Stewart BW. and Wild CP. World Cancer Report 2014. Lyon: World Health Organization; IARC Nonserial Publication, 2014: 632 s. 2. Siegel RL., Miller KD., Jemal A. Cancer statistics, 2017. CA Cancer J Clin 2017; 67:7–30. 3. Şencan İ.ve Keskinkılıç B. Türkiye Kanser İstatistikleri, T.C. Sağlık Bakanlığı, Türkiye Halk Sağlığı Kurumu, Ankara, 2017: 48 s. 4. Staunton L., Tonry C., Lis R., Espina V., Liotta L., Inziatari R., Bowden M., Fabre A., Oleary J., Finn SP., Loda M. and Pennington SR. Pathology-driven comprehensive proteomic profiling of the prostate cancer tumour microenvironment. Mol Cancer Res 2016; 15(3): 1–13. 5. Anonymus, 2017. Prostate Cancer Rates by Race and Ethnicity [online], https://www.cdc.gov/cancer/prostate/statistics/race .htm, [Ziyaret tarihi: 27/10/2017]. Centers for Disease Control and Prevention. 6. Shelley M., Wilt TJ., Coles B., Mason MD. Cryotherapy for localised prostate cancer. Cochrane Db Syst Rev 2007; 18(3): CD005010. 7. Woodhouse EC., Chuaqui RF., Liotta L.. General mechanisms of metastasis. Cancer Supplement 1997; 80(8): 1529-37. 8. Fraser SP., Salvador V., Manning EA., Mizal J., Altun S., Raza M., Berridge RJ., Djamgoz MBA. Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol 2003; 195: 479-87. 9. Lang F., Föller, M., Lang, KS., Lang, PA., Ritter, M., Gulbins, E., Vereninov, A., Huber, SM. Ion channels in cell proliferation and apoptotic cell death. J Membrane Biol 2005; 205: 147-57. 10. Ashcroft FM. From molecule to malady. Nature 2006; 440 (23): 440-7. 11. Conti M. Targetting ion channels for new strategies in cancer diagnosis and therapy. Curr Clin Pharmacol 2007; 2: 135-44. 12. Grimes JA., Fraser SP., Stephens GJ., Downing JEG., Laniado, ME., Foster CS., Abel PD., Djamgoz MBA. Differential expression of voltageactivated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Lett 1995; 369: 290-4. 13. Grimes JA., Djamgoz MBA. Electrophysiological characterization of voltage- gated Na+ current expressed in the highly metastatic Mat-LyLu cell line of rat prostate cancer. J Cell Physiol 1998; 175: 50-8. 14. Diss, JKJ., Stewart, D., Pani F., Foster CS., Walker MM., Patel A., Djamgoz MBA. A potential novel marker for human prostate cancer: voltage- gated sodium channel expression in vitro. Prostate Cancer P D 2005; 8: 266-73. 15. Fraser SP., Diss, JKJ., Chioni, AM., Mycielska ME., Pan H., Yamaci RF., Pani F., Siwy Z., Krasowska M., Grzywna Z., Brackenbury WJ., Theodorou D., Koyuturk M., Kaya H., Battaloğlu E., Tamburo De Bella M., Slade MJ., Tolhurst R., Palmieri C., Jiang J., Latchman DS., Coombes RC., Djamgoz MBA. Voltage- gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res 2005; 11(15): 5381-9. 16. Onkal L., and Djamgoz, MBA. Molecular pharmacology of voltage-gated sodium channel expression in metastatic disease: clinical potential of neonatal Nav1.5 in breast cancer. Eur J Pharmacol 2009; 625: 206–19. 17. Nakajima T., Kubota N., Tsutsumi T., Ogurġ A., Imuta H., Jo T., Oonuma H., Soma M., Meguro K., Takano H., Nagase T., Nagata T. Eicosapentaenoic acid inhibits voltage-gated sodium channels and invasiveness in prostate cancer cells. Br J Pharmacol 2009; 156(3): 420- 31. 18. Bennett ES., Smith BA., Harper JM. Voltage-gated Na+ channels confer invasive properties on human prostate cancer cells. Eur J Physiol 2004; 447: 908- 14. 19. Yu FH., Catterall WA. Overview of voltage-gated sodium channel family. Genome Biol 2003; 4(3): 207/1-207/7. 20. Patino GA., and Isom LL. Electrophysiology and beyond: multiple roles of Na+ channel beta subunits in development and disease. Neurosci Lett 2010; 486: 53–9. 21. Goldin AL. Evolution of voltage-gated Na+ channels. J Exp Biol 2002; 205: 575-84. 22. Diss, JKJ., Archer SN., Hirano J., Fraser SP., Djamgoz MBA. Expression profiles of voltagegated Na+ channel α-subunit genes in rat and human prostate cancer cell lines. The Prostate, 2001; 48: 165-78. 23. Nandana S., Chung LWK. Prostate cancer progression and metastasis: potential regulatory pathways for therapeutic targeting. Am J Clin Exp Urol 2014; 2(2): 92-101. 24. Nelson M., Yang M., Millican-Slater R., Brackenbury WJ. Nav1.5 regulates breast tumor growth and metastatic dissemination in vivo. Oncotarget 2015; 20: 6(32). 25. Kunzelmann K. Ion channels and cancer. J Membrane Biol 2005; 205: 159-73. 26. Fiske JL., Fomin VP., Brown ML., Duncan RL., Sikes RA., Voltage-sensitive ion channels and cancer. Cancer Metast Rev 2006; 25: 493-500. 27. Djamgoz MBA. Biophysics of Cancer: Cellular Excitability (“CELEX”) Hypothesis of Metastasis. J Clin Exp Oncol 2014; S1:005. 28. Laniado ME., Lalani EN., Fraser SP., Grimes JA., Bhangal G., Djamgoz MBA., Abel PD. Expression and functional analysis of voltage-activated Na+ channels in human prostate cancer cell lines and their contribution to invasion in vitro. Am J Pathol 1997; 150(4): 1213-21. 29. Yildirim S., Altun S., Gumushan H., Patel A., Djamgoz MBA. Voltage-gated sodium channel activity promotes prostate cancer metastasis in vivo. Cancer Lett 2012; 323: 58-61. 30. Suy S., Hansen TP., Auto HD., Kallakury BVS., Dailey V., Danner M., Macarthur L., Zhang Y., Miessau MJ., Collins SP., Brown ML. Expression of voltage-gated sodium channel Nav1.8 in human prostate cancer is associated with high histological grade. J Clin Exp Oncol 2012; 1:1(2).

An Immunohistochemical Investigation of VGSCs in Prostate Cancer Patients in Sanliurfa

Year 2017, Issue: 3 - -Vol14, No 3; (Supll:1) IONCC 2017 Special edition, 23 - 30, 30.12.2017

Abstract

Aim: In this study, it was aimed to investigate presence
of the protein which encoded by Nav1.7 gene in
prostate tissue specimens obtained from some patients
consulted to Harran University Medical Faculty
Hospital and Mehmet Akif Inan Training and Research
Hospital in Sanliurfa owing to genitourinary system
disorders.
Materials and Methods: In this study, it was used the
prostate tissue samples which belong to 20 diagnosed
patients (benign prostatic hyperplasia, prostatic
intraepithelial neoplasia, non-metastatic prostate
cancer and metastatic prostate cancer), and four normal
prostate. These specimens obtained from Pathology
Department archives of Harran University Faculty of
Medicine Hospital and Mehmet Akif Inan Training and
Research Hospital belong to 2012–2014. For labelling,
Anti-Sodium channel Nav1.7 monoclonal antibody
(Millipore, Merck, USA) was used. It was studied with
rat cerebellum tissue as positive control in accordance
with the manufacturer’s protocol. The
immunohistochemical staining procedure was
performed in automatic immunohistochemistry device
(Ventana, Roche, USA).
Results: There was no staining in the negative control
sections which non-treated with primer antibody. No
remarkable staining was observed in prostate tissue
specimens (normal prostate tissue, benign prostatic
hyperplasia, prostatic intraepithelial neoplasia tissue,
non-metastatic prostate cancer and metastatic prostate
cancer) when compared with the positive control.
Conclusion: The VGSC protein which encoded by
Nav1.7 gene was not showed by
immunohistochemically in patients with normal
prostate, benign prostatic hyperplasia as well as
different grades of cancer such as prostatic
intraepithelial neoplasia, non-metastatic prostate
cancer, and metastatic prostate cancer. Investigations
should be continued by marking with various
antibodies that produced against VGSCs encoded by
other genes. Additionally, the findings should confirm
with other molecular techniques.

References

  • 1. Stewart BW. and Wild CP. World Cancer Report 2014. Lyon: World Health Organization; IARC Nonserial Publication, 2014: 632 s. 2. Siegel RL., Miller KD., Jemal A. Cancer statistics, 2017. CA Cancer J Clin 2017; 67:7–30. 3. Şencan İ.ve Keskinkılıç B. Türkiye Kanser İstatistikleri, T.C. Sağlık Bakanlığı, Türkiye Halk Sağlığı Kurumu, Ankara, 2017: 48 s. 4. Staunton L., Tonry C., Lis R., Espina V., Liotta L., Inziatari R., Bowden M., Fabre A., Oleary J., Finn SP., Loda M. and Pennington SR. Pathology-driven comprehensive proteomic profiling of the prostate cancer tumour microenvironment. Mol Cancer Res 2016; 15(3): 1–13. 5. Anonymus, 2017. Prostate Cancer Rates by Race and Ethnicity [online], https://www.cdc.gov/cancer/prostate/statistics/race .htm, [Ziyaret tarihi: 27/10/2017]. Centers for Disease Control and Prevention. 6. Shelley M., Wilt TJ., Coles B., Mason MD. Cryotherapy for localised prostate cancer. Cochrane Db Syst Rev 2007; 18(3): CD005010. 7. Woodhouse EC., Chuaqui RF., Liotta L.. General mechanisms of metastasis. Cancer Supplement 1997; 80(8): 1529-37. 8. Fraser SP., Salvador V., Manning EA., Mizal J., Altun S., Raza M., Berridge RJ., Djamgoz MBA. Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol 2003; 195: 479-87. 9. Lang F., Föller, M., Lang, KS., Lang, PA., Ritter, M., Gulbins, E., Vereninov, A., Huber, SM. Ion channels in cell proliferation and apoptotic cell death. J Membrane Biol 2005; 205: 147-57. 10. Ashcroft FM. From molecule to malady. Nature 2006; 440 (23): 440-7. 11. Conti M. Targetting ion channels for new strategies in cancer diagnosis and therapy. Curr Clin Pharmacol 2007; 2: 135-44. 12. Grimes JA., Fraser SP., Stephens GJ., Downing JEG., Laniado, ME., Foster CS., Abel PD., Djamgoz MBA. Differential expression of voltageactivated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Lett 1995; 369: 290-4. 13. Grimes JA., Djamgoz MBA. Electrophysiological characterization of voltage- gated Na+ current expressed in the highly metastatic Mat-LyLu cell line of rat prostate cancer. J Cell Physiol 1998; 175: 50-8. 14. Diss, JKJ., Stewart, D., Pani F., Foster CS., Walker MM., Patel A., Djamgoz MBA. A potential novel marker for human prostate cancer: voltage- gated sodium channel expression in vitro. Prostate Cancer P D 2005; 8: 266-73. 15. Fraser SP., Diss, JKJ., Chioni, AM., Mycielska ME., Pan H., Yamaci RF., Pani F., Siwy Z., Krasowska M., Grzywna Z., Brackenbury WJ., Theodorou D., Koyuturk M., Kaya H., Battaloğlu E., Tamburo De Bella M., Slade MJ., Tolhurst R., Palmieri C., Jiang J., Latchman DS., Coombes RC., Djamgoz MBA. Voltage- gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res 2005; 11(15): 5381-9. 16. Onkal L., and Djamgoz, MBA. Molecular pharmacology of voltage-gated sodium channel expression in metastatic disease: clinical potential of neonatal Nav1.5 in breast cancer. Eur J Pharmacol 2009; 625: 206–19. 17. Nakajima T., Kubota N., Tsutsumi T., Ogurġ A., Imuta H., Jo T., Oonuma H., Soma M., Meguro K., Takano H., Nagase T., Nagata T. Eicosapentaenoic acid inhibits voltage-gated sodium channels and invasiveness in prostate cancer cells. Br J Pharmacol 2009; 156(3): 420- 31. 18. Bennett ES., Smith BA., Harper JM. Voltage-gated Na+ channels confer invasive properties on human prostate cancer cells. Eur J Physiol 2004; 447: 908- 14. 19. Yu FH., Catterall WA. Overview of voltage-gated sodium channel family. Genome Biol 2003; 4(3): 207/1-207/7. 20. Patino GA., and Isom LL. Electrophysiology and beyond: multiple roles of Na+ channel beta subunits in development and disease. Neurosci Lett 2010; 486: 53–9. 21. Goldin AL. Evolution of voltage-gated Na+ channels. J Exp Biol 2002; 205: 575-84. 22. Diss, JKJ., Archer SN., Hirano J., Fraser SP., Djamgoz MBA. Expression profiles of voltagegated Na+ channel α-subunit genes in rat and human prostate cancer cell lines. The Prostate, 2001; 48: 165-78. 23. Nandana S., Chung LWK. Prostate cancer progression and metastasis: potential regulatory pathways for therapeutic targeting. Am J Clin Exp Urol 2014; 2(2): 92-101. 24. Nelson M., Yang M., Millican-Slater R., Brackenbury WJ. Nav1.5 regulates breast tumor growth and metastatic dissemination in vivo. Oncotarget 2015; 20: 6(32). 25. Kunzelmann K. Ion channels and cancer. J Membrane Biol 2005; 205: 159-73. 26. Fiske JL., Fomin VP., Brown ML., Duncan RL., Sikes RA., Voltage-sensitive ion channels and cancer. Cancer Metast Rev 2006; 25: 493-500. 27. Djamgoz MBA. Biophysics of Cancer: Cellular Excitability (“CELEX”) Hypothesis of Metastasis. J Clin Exp Oncol 2014; S1:005. 28. Laniado ME., Lalani EN., Fraser SP., Grimes JA., Bhangal G., Djamgoz MBA., Abel PD. Expression and functional analysis of voltage-activated Na+ channels in human prostate cancer cell lines and their contribution to invasion in vitro. Am J Pathol 1997; 150(4): 1213-21. 29. Yildirim S., Altun S., Gumushan H., Patel A., Djamgoz MBA. Voltage-gated sodium channel activity promotes prostate cancer metastasis in vivo. Cancer Lett 2012; 323: 58-61. 30. Suy S., Hansen TP., Auto HD., Kallakury BVS., Dailey V., Danner M., Macarthur L., Zhang Y., Miessau MJ., Collins SP., Brown ML. Expression of voltage-gated sodium channel Nav1.8 in human prostate cancer is associated with high histological grade. J Clin Exp Oncol 2012; 1:1(2).
There are 1 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Hatice Gumushan Aktas

Cemal Cavus This is me

Ulaş Alabalık This is me

Publication Date December 30, 2017
Submission Date October 31, 2017
Acceptance Date November 28, 2017
Published in Issue Year 2017 Issue: 3 - -Vol14, No 3; (Supll:1) IONCC 2017 Special edition

Cite

Vancouver Aktas HG, Cavus C, Alabalık U. Şanlıurfa’daki Prostat Kanseri Hastalarında VGSC’lerin İmmünohistokimyasal Olarak İncelenmesi. Harran Üniversitesi Tıp Fakültesi Dergisi. 2017;14(3):23-30.

Harran Üniversitesi Tıp Fakültesi Dergisi  / Journal of Harran University Medical Faculty