Research Article
BibTex RIS Cite

Propofol ve Tiyopental, HEK-293 Hücrelerinde Amino Asit ve Karnitin Metabolizmasını Bozar: Mitokondriyal Toksisiteye Dair Bulgular

Year 2025, Volume: 22 Issue: 4

Abstract

Amaç: Propofol ve tiyopental, hızlı başlangıç ve kısa etki süresi ile yaygın olarak kullanılan intravenöz anestezik ajanlardır. Ancak bu ajanların yüksek doz maruziyet altında mitokondri bütünlüğü ve hücresel metabolizma üzerindeki etkileri yeterince anlaşılamamıştır.
Materyal ve metod: Bu çalışmada, metabolomik temelli bir yaklaşımla propofol ve tiyopentalin HEK-293 hücrelerinde hücre içi amino asit ve karnitin metabolizması üzerindeki doz bağımlı etkileri incelenmiştir. Hücre canlılığı MTT testi ile değerlendirilmiş; hedeflenmiş metabolit düzeyleri sıvı kromatografisi-kütle spektrometresi (MS)/MS yöntemiyle nicel olarak analiz edilmiştir. Metabolit düzeyleri toplam hücresel protein miktarına normalize edilmiştir.
Bulgular: Her iki anestezik ajan da anlamlı ve doz bağımlı metabolik değişikliklere yol açmıştır. Propofol, temel amino asitler (glutamin, alanin, aspartat) ve asilkarnitinlerde (C0, C2) belirgin azalma oluşturmuş; bu da mitokondriyal β-oksidasyon ve redoks homeostazında bozulmaya işaret etmektedir. Tiyopental daha düşük konsantrasyonlarda daha yüksek sitotoksisite göstermiş ancak karnitin metabolizmasında daha az bozulmaya neden olmuştur. Etki büyüklüğü analizi (Cohen’s d), özellikle 200 μg/mL dozda olmak üzere, iki ajan arasında büyükten aşırıya değişen farklar olduğunu doğrulamıştır.
Sonuç: Propofol ve tiyopental, böbrek hücrelerinde ajanlara özgü metabolik izler oluşturmakta olup bu farklılıklar mitokondriyal disfonksiyon ve anestezi kaynaklı toksisite açısından klinik önem taşımaktadır. Elde edilen bulgular, hedeflenmiş metabolomik profil analizlerinin, özellikle yüksek riskli veya uzun süreli anestezik maruziyet gerektiren durumlarda daha güvenli anestezi uygulamalarını yönlendirmede değerli bir araç olabileceğini göstermektedir.
Anahtar Kelimeler:

Project Number

HUBAK: 31/12/2019; project number: 19342

References

  • 1. Kazi M, Gaskari A, Shahba AA, Ahmad S, Aldughaim MS, Hussain MD. Propofol: Current Updates, Challenges, and Strategies for Improved Self-Nanoemulsifying Formulation. ACS Pharmacol Transl Sci. 2025;8:1013-1027.
  • 2. Borzage M, Peterson B. A Scoping Review of the Mechanisms Underlying Developmental Anesthetic Neurotoxicity. Anesth Analg. 2025;140:409-426.
  • 3. Pehlivan B, Pehlivan VF, Koyuncu I, Duran E, Erdogdu H. Comparison of cytotoxic, reactive oxygen species (ROS) and apoptotic effects of propofol, thiopental and dexmedetomidine on liver cells at accumulative doses (AML12). Eur Rev Med Pharmacol Sci. 2023;27:1336-1345.
  • 4. Pehlivan VF, Pehlivan B, Duran E, Koyuncu İ. Comparing the Effects of Propofol and Thiopental on Human Renal HEK-293 Cells With a Focus on Reactive Oxygen Species (ROS) Production, Cytotoxicity, and Apoptosis: Insights Into Dose-Dependent Toxicity. Cureus. 2024;16(11):e74120.
  • 5. Lindsay D, Adapa RM, Menon DK, Stamatakis EA. The amnesic effects of propofol on functional connectivity in the hippocampus determined by functional magnetic resonance imaging in volunteers. Br J Anaesth. 2025;135(1):108-119.
  • 6. Arslan U, Ulker P, Yildirim A, Cengiz M, Yilmaz M, Arici AG, et al. The Effects of Propofol and Thiopental on Nitric Oxide Production and Release in Erythrocytes. Medicina (Kaunas). 2025;61(5):841.
  • 7. Kim BG, Jeon YT, Han J, Bae YK, Lee SU, Ryu JH, et al. The Neuroprotective Effect of Thiopental on the Postoperative Neurological Complications in Patients Undergoing Surgical Clipping of Unruptured Intracranial Aneurysm: A Retrospective Analysis. J Clin Med. 2021;10(6):1197.
  • 8. Dai X, Zhang R, Deng N, Tang L, Zhao B. Anesthetic Influence on Electroconvulsive Therapy: A Comprehensive Review. Neuropsychiatr Dis Treat. 2024;20:1491-1502.
  • 9. Wang K, Wang Y, Zhang T, Chang B, Fu D, Chen X. The Role of Intravenous Anesthetics for Neuro: Protection or Toxicity? Neurosci Bull. 2025;41:107-130.
  • 10. Li WK, Chen XJC, Altshuler D, Islam S, Spiegler P, Emerson L, et al. The incidence of propofol infusion syndrome in critically-ill patients. J Crit Care. 2022;71:154098.
  • 11. Tashima K, Hayashi M, Oyoshi T, Uemura J, Korematsu S, Hirata N. Anesthesia management for percutaneous mitral valve repair in a patient with mitochondrial cardiomyopathy and low cardiac function: a case report. JA Clin Rep. 2024;10:49.
  • 12. Suddock J, Kent K, Regina A, Cain M. Barbiturate Toxicity. StatPearls Publishing; 2025.
  • 13. Mazza T, Scalise M, Console L, Galluccio M, Giangregorio N, Tonazzi A, et al. Carnitine traffic and human fertility. Biochem Pharmacol. 2024;230:116565.
  • 14. Tan X, Liu R, Dan L, Huang H, Duan C. Effects of anesthetics on mitochondrial quality control: mechanisms and clinical implications. Anesthesiol Perioper Sci. 2024;2:31.
  • 15. Demarquoy J. Revisiting the Role of Carnitine in Heart Disease Through the Lens of the Gut Microbiota. Nutrients. 2024;16(23):4244.
  • 16. Twardowska M, Łyskowski A, Misiorek M, Szymaszek Ż, Wołowiec S, Dąbrowska M, et al. Human Embryonic Kidney HEK293 Cells as a Model to Study SMVT-Independent Transport of Biotin and Biotin-Furnished Nanoparticles in Targeted Therapy. Int J Mol Sci. 2025;26(4):1594.
  • 17. Zhang J, Yuan H, Yao X, Chen S. Endogenous ion channels expressed in human embryonic kidney (HEK-293) cells. Pflugers Arch. 2022;474:665-680.
  • 18. Emwas AH, Zacharias HU, Alborghetti MR, Gowda GAN, Raftery D, McKay RT, et al. Recommendations for sample selection, collection and preparation for NMR-based metabolomics studies of blood. Metabolomics. 2025;21:66.
  • 19. Fernández-Pomares C, Estrada-Pérez AR, Mendoza-Figueroa HL, García-Vázquez JB, Rosales-Hernández MC, Correa-Basurto J, et al. Study of acute lethality, teratogenesis, and metabolomic changes of N-(2’-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA) on Artemia franciscana. Sci Rep. 2025;15:18644.
  • 20. Sillé F, Hartung T. Metabolomics in Preclinical Drug Safety Assessment: Current Status and Future Trends. Metabolites. 2024;14(2):98.
  • 21. Abarikwu SO, Simple G, Onuoha SC, Mokwenye I, Ayogu JF. Evaluation of the protective effects of quercetin and gallic acid against oxidative toxicity in rat’s kidney and HEK-293 cells. Toxicol Rep. 2020;7:955-962.
  • 22. Chhabile S, Vishwakarma P, Agrawal A, Pundkar SR, Mali G, Patil S, et al. Effectiveness of Papain-Based Organic Dentifrices Versus Commercial Whitening Dentifrice on Tea-Induced Tooth Stains: An In Vitro Study. Cureus. 2024;16(8):e69225.
  • 23. Celik M, Şen A, Koyuncu İ, Gönel A. Plasma-Free Amino Acid Profiling of Nasal Polyposis Patients. Comb Chem High Throughput Screen. 2019;22(9):657-662.
  • 24. la Marca G, Malvagia S, Pasquini E, Innocenti M, Fernandez MR, Donati MA, et al. The inclusion of succinylacetone as marker for tyrosinemia type I in expanded newborn screening programs. Rapid Commun Mass Spectrom. 2008;22:812-818.
  • 25. Azzari C, la Marca G, Resti M. Neonatal screening for severe combined immunodeficiency caused by an adenosine deaminase defect: A reliable and inexpensive method using tandem mass spectrometry. J Allergy Clin Immunol. 2011;127:1394-1399.
  • 26. Saglik A, Koyuncu I, Yalcin H, Adibelli FM, Gonel A, Toptan M. Carnitine analysis in pterygium. Arq Bras Oftalmol. 2020;83(1):15-19.
  • 27. Garmon E, Hendrix J, Huecker M. Topical, Local, and Regional Anesthesia and Anesthetics. StatPearls Publishing; 2025.
  • 28. Urban T, Waldauf P, Krajčová A, Jiroutková K, Halačová M, Džupa V, et al. Kinetic characteristics of propofol-induced inhibition of electron-transfer chain and fatty acid oxidation in human and rodent skeletal and cardiac muscles. PLoS One. 2019;14:e0217254.
  • 29. Zhang Z, Yang W, Wang L, Zhu C, Cui S, Wang T, et al. Unraveling the role and mechanism of mitochondria in postoperative cognitive dysfunction: a narrative review. J Neuroinflammation. 2024;21:293.
  • 30. Jiang T, Ma C, Wang Z, Miao Y. A review of local anesthetic-induced heart toxicity using human induced pluripotent stem cell-derived cardiomyocytes. Mol Cell Probes. 2024;76:101965.
  • 31. Li WK, Chen XJC, Altshuler D, Islam S, Spiegler P, Emerson L, et al. The incidence of propofol infusion syndrome in critically-ill patients. J Crit Care. 2022;71:154098.
  • 32. Fedorov A, Lehto A, Klein J. Inhibition of mitochondrial respiration by general anesthetic drugs. Naunyn Schmiedebergs Arch Pharmacol. 2023;396:375-381.
  • 33. Achilli C, Ciana A, Minetti G. Immortalized HEK 293 Kidney Cell Lines as Models of Renal Cells: Friends or Foes? J Controversies Biomed Res. 2018;4:6-9.

Propofol and Thiopental Disrupt Amino Acid and Carnitine Metabolism in HEK-293 Cells: Insights into Mitochondrial Toxicity

Year 2025, Volume: 22 Issue: 4

Abstract

Background: Propofol and thiopental are widely used intravenous anesthetics with rapid onset and short duration of action. However, their impact on mitochondrial integrity and cellular metabolism under high-dose exposure remains incompletely characterized.
Materials and Methods: This study employed a metabolomics-based approach, we examined the dose-dependent effects of propofol and thiopental on intracellular amino acid and carnitine metabolism in HEK-293 cells. Cell viability was assessed by MTT assay, and targeted quantification of metabolites was performed via liquid chromatography-mass spectrometry (MS)/MS. All metabolite levels were normalized to total protein content to account for cellular variability.
Results: Both anesthetics caused significant, dose-dependent metabolic alterations. Propofol led to marked depletion of key amino acids (glutamine, alanine, aspartate) and acylcarnitines (C0, C2), indicating compromised mitochondrial β-oxidation and redox homeostasis. Thiopental showed higher cytotoxicity at lower concentrations but induced less disruption in carnitine pathways. Effect size analysis (Cohen’s d) confirmed large-to-extreme differences, particularly at 200 μg/mL, underscoring distinct metabolic footprints for each agent.
Conclusions: Propofol and thiopental elicit agent-specific metabolic signatures in renal cells, with implications for mitochondrial dysfunction and anesthetic-induced toxicity. These findings support the utility of targeted metabolomic profiling in guiding safer anesthetic practic

Ethical Statement

none

Supporting Institution

Harran University Scientific Research Projects Unit

Project Number

HUBAK: 31/12/2019; project number: 19342

References

  • 1. Kazi M, Gaskari A, Shahba AA, Ahmad S, Aldughaim MS, Hussain MD. Propofol: Current Updates, Challenges, and Strategies for Improved Self-Nanoemulsifying Formulation. ACS Pharmacol Transl Sci. 2025;8:1013-1027.
  • 2. Borzage M, Peterson B. A Scoping Review of the Mechanisms Underlying Developmental Anesthetic Neurotoxicity. Anesth Analg. 2025;140:409-426.
  • 3. Pehlivan B, Pehlivan VF, Koyuncu I, Duran E, Erdogdu H. Comparison of cytotoxic, reactive oxygen species (ROS) and apoptotic effects of propofol, thiopental and dexmedetomidine on liver cells at accumulative doses (AML12). Eur Rev Med Pharmacol Sci. 2023;27:1336-1345.
  • 4. Pehlivan VF, Pehlivan B, Duran E, Koyuncu İ. Comparing the Effects of Propofol and Thiopental on Human Renal HEK-293 Cells With a Focus on Reactive Oxygen Species (ROS) Production, Cytotoxicity, and Apoptosis: Insights Into Dose-Dependent Toxicity. Cureus. 2024;16(11):e74120.
  • 5. Lindsay D, Adapa RM, Menon DK, Stamatakis EA. The amnesic effects of propofol on functional connectivity in the hippocampus determined by functional magnetic resonance imaging in volunteers. Br J Anaesth. 2025;135(1):108-119.
  • 6. Arslan U, Ulker P, Yildirim A, Cengiz M, Yilmaz M, Arici AG, et al. The Effects of Propofol and Thiopental on Nitric Oxide Production and Release in Erythrocytes. Medicina (Kaunas). 2025;61(5):841.
  • 7. Kim BG, Jeon YT, Han J, Bae YK, Lee SU, Ryu JH, et al. The Neuroprotective Effect of Thiopental on the Postoperative Neurological Complications in Patients Undergoing Surgical Clipping of Unruptured Intracranial Aneurysm: A Retrospective Analysis. J Clin Med. 2021;10(6):1197.
  • 8. Dai X, Zhang R, Deng N, Tang L, Zhao B. Anesthetic Influence on Electroconvulsive Therapy: A Comprehensive Review. Neuropsychiatr Dis Treat. 2024;20:1491-1502.
  • 9. Wang K, Wang Y, Zhang T, Chang B, Fu D, Chen X. The Role of Intravenous Anesthetics for Neuro: Protection or Toxicity? Neurosci Bull. 2025;41:107-130.
  • 10. Li WK, Chen XJC, Altshuler D, Islam S, Spiegler P, Emerson L, et al. The incidence of propofol infusion syndrome in critically-ill patients. J Crit Care. 2022;71:154098.
  • 11. Tashima K, Hayashi M, Oyoshi T, Uemura J, Korematsu S, Hirata N. Anesthesia management for percutaneous mitral valve repair in a patient with mitochondrial cardiomyopathy and low cardiac function: a case report. JA Clin Rep. 2024;10:49.
  • 12. Suddock J, Kent K, Regina A, Cain M. Barbiturate Toxicity. StatPearls Publishing; 2025.
  • 13. Mazza T, Scalise M, Console L, Galluccio M, Giangregorio N, Tonazzi A, et al. Carnitine traffic and human fertility. Biochem Pharmacol. 2024;230:116565.
  • 14. Tan X, Liu R, Dan L, Huang H, Duan C. Effects of anesthetics on mitochondrial quality control: mechanisms and clinical implications. Anesthesiol Perioper Sci. 2024;2:31.
  • 15. Demarquoy J. Revisiting the Role of Carnitine in Heart Disease Through the Lens of the Gut Microbiota. Nutrients. 2024;16(23):4244.
  • 16. Twardowska M, Łyskowski A, Misiorek M, Szymaszek Ż, Wołowiec S, Dąbrowska M, et al. Human Embryonic Kidney HEK293 Cells as a Model to Study SMVT-Independent Transport of Biotin and Biotin-Furnished Nanoparticles in Targeted Therapy. Int J Mol Sci. 2025;26(4):1594.
  • 17. Zhang J, Yuan H, Yao X, Chen S. Endogenous ion channels expressed in human embryonic kidney (HEK-293) cells. Pflugers Arch. 2022;474:665-680.
  • 18. Emwas AH, Zacharias HU, Alborghetti MR, Gowda GAN, Raftery D, McKay RT, et al. Recommendations for sample selection, collection and preparation for NMR-based metabolomics studies of blood. Metabolomics. 2025;21:66.
  • 19. Fernández-Pomares C, Estrada-Pérez AR, Mendoza-Figueroa HL, García-Vázquez JB, Rosales-Hernández MC, Correa-Basurto J, et al. Study of acute lethality, teratogenesis, and metabolomic changes of N-(2’-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA) on Artemia franciscana. Sci Rep. 2025;15:18644.
  • 20. Sillé F, Hartung T. Metabolomics in Preclinical Drug Safety Assessment: Current Status and Future Trends. Metabolites. 2024;14(2):98.
  • 21. Abarikwu SO, Simple G, Onuoha SC, Mokwenye I, Ayogu JF. Evaluation of the protective effects of quercetin and gallic acid against oxidative toxicity in rat’s kidney and HEK-293 cells. Toxicol Rep. 2020;7:955-962.
  • 22. Chhabile S, Vishwakarma P, Agrawal A, Pundkar SR, Mali G, Patil S, et al. Effectiveness of Papain-Based Organic Dentifrices Versus Commercial Whitening Dentifrice on Tea-Induced Tooth Stains: An In Vitro Study. Cureus. 2024;16(8):e69225.
  • 23. Celik M, Şen A, Koyuncu İ, Gönel A. Plasma-Free Amino Acid Profiling of Nasal Polyposis Patients. Comb Chem High Throughput Screen. 2019;22(9):657-662.
  • 24. la Marca G, Malvagia S, Pasquini E, Innocenti M, Fernandez MR, Donati MA, et al. The inclusion of succinylacetone as marker for tyrosinemia type I in expanded newborn screening programs. Rapid Commun Mass Spectrom. 2008;22:812-818.
  • 25. Azzari C, la Marca G, Resti M. Neonatal screening for severe combined immunodeficiency caused by an adenosine deaminase defect: A reliable and inexpensive method using tandem mass spectrometry. J Allergy Clin Immunol. 2011;127:1394-1399.
  • 26. Saglik A, Koyuncu I, Yalcin H, Adibelli FM, Gonel A, Toptan M. Carnitine analysis in pterygium. Arq Bras Oftalmol. 2020;83(1):15-19.
  • 27. Garmon E, Hendrix J, Huecker M. Topical, Local, and Regional Anesthesia and Anesthetics. StatPearls Publishing; 2025.
  • 28. Urban T, Waldauf P, Krajčová A, Jiroutková K, Halačová M, Džupa V, et al. Kinetic characteristics of propofol-induced inhibition of electron-transfer chain and fatty acid oxidation in human and rodent skeletal and cardiac muscles. PLoS One. 2019;14:e0217254.
  • 29. Zhang Z, Yang W, Wang L, Zhu C, Cui S, Wang T, et al. Unraveling the role and mechanism of mitochondria in postoperative cognitive dysfunction: a narrative review. J Neuroinflammation. 2024;21:293.
  • 30. Jiang T, Ma C, Wang Z, Miao Y. A review of local anesthetic-induced heart toxicity using human induced pluripotent stem cell-derived cardiomyocytes. Mol Cell Probes. 2024;76:101965.
  • 31. Li WK, Chen XJC, Altshuler D, Islam S, Spiegler P, Emerson L, et al. The incidence of propofol infusion syndrome in critically-ill patients. J Crit Care. 2022;71:154098.
  • 32. Fedorov A, Lehto A, Klein J. Inhibition of mitochondrial respiration by general anesthetic drugs. Naunyn Schmiedebergs Arch Pharmacol. 2023;396:375-381.
  • 33. Achilli C, Ciana A, Minetti G. Immortalized HEK 293 Kidney Cell Lines as Models of Renal Cells: Friends or Foes? J Controversies Biomed Res. 2018;4:6-9.
There are 33 citations in total.

Details

Primary Language English
Subjects Anaesthesiology, Intensive Care, Medical Biochemistry - Amino Acids and Metabolites
Journal Section Research Article
Authors

Veli Fahri Pehlivan 0000-0001-5661-4499

Başak Pehlivan 0000-0001-6985-343X

Erdoğan Duran 0000-0002-9606-8266

İsmail Koyuncu 0000-0002-9469-4757

Hamza Erdoğdu 0000-0002-5025-2367

Orhan Binici 0000-0002-3158-8252

Mahmut Alp Karahan 0000-0002-7210-9481

Abdulhakim Şengel 0000-0003-0905-1018

Ahmet Atlas 0000-0001-5999-0510

Project Number HUBAK: 31/12/2019; project number: 19342
Early Pub Date December 10, 2025
Publication Date December 11, 2025
Submission Date June 19, 2025
Acceptance Date August 19, 2025
Published in Issue Year 2025 Volume: 22 Issue: 4

Cite

Vancouver Pehlivan VF, Pehlivan B, Duran E, Koyuncu İ, Erdoğdu H, Binici O, et al. Propofol and Thiopental Disrupt Amino Acid and Carnitine Metabolism in HEK-293 Cells: Insights into Mitochondrial Toxicity. Harran Üniversitesi Tıp Fakültesi Dergisi. 2025;22(4).

Articles published in this journal are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC-BY-NC-SA 4.0).