Research Article
BibTex RIS Cite

Bazı kaba yemlere ilave edilen probiyotiklerin in vitro organik madde sindirimi ve metan üretimi üzerine etkileri

Year 2019, , 93 - 98, 01.07.2019
https://doi.org/10.31196/huvfd.592585

Abstract

Bu çalışma ruminantlarda yaygın olarak kullanılan bazı
kaba yemlere katılan probiyotiklerin (Lactobacillus
rhamnosus
, Bifidobacterium lactis
ve Saccharomyces boulardii) in vitro
ortamda metan gazı oluşumuna etkisini tespit etmek için yapılmıştır. Bu amaçla
%0.1 oranında probiyotik ilave edilen öğütülmüş kaba yem örnekleri rumen sıvısı
içeren özel cam tüpler içerisinde 39 °C’de 24 saat inkube edilmiştir.
İnkubasyon sonunda oluşan toplam gaz içerisindeki metan (CH4) gazı
ve karbondioksit (CO2) yüzdesi CH4 ölçüm cihazı
yardımıyla belirlenmiştir. Ayrıca her bir deneme grubundaki in vitro organik
madde sindirilebilirliği (IVOMS), amonyak azotu miktarı (NH3-N),
metabolik enerji (ME) ve pH değerleri belirlenmiştir. Buğday samanına ilave
edilen B. lactis’in oluşan toplam
gaz, CH4 ve CO2 hacmini ve IVOMS’ni düşürdüğü, S. boulardii’nin ise CH4
yüzdesini yükseltirken, CO2 yüzdesini düşürdüğü gözlenmiştir. Çayır
kuru otuna ilave edilen L. rhamnosus
oluşan toplam gaz miktarını, CH4 miktarını ve IVOMS’ni yükseltirken
CH4 yüzdesini etkilememiştir. Silaj ve yonca kuru otuna ilave edilen
probiyotikler CH4 ve CO2 düzeylerini etkilememiştir.
Sonuç olarak çalışmada buğday samanına katılan B. lactis dışındaki probiyotik mikroorganizmalar CH4
üretimini arttırmış ya da etkilememiştir. Buğday samanına ilave edilen B. lactis’in CH4 miktarını
azaltması, Çayır kuru otuna ilave edilen L.
rhamnosus
’un ise CH4 miktarını arttırmasının söz konusu yemlerin
IVOMS’ni etkilemesinden kaynaklandığı, bu nedenle sunulan çalışmada kullanılan
probiyotiklerin CH4 miktarını azaltmakta etkili olmadığı sonucuna
varılmıştır. 

References

  • Ahmed M, Prasad J, Gill H, Stevenson L, Gopal P, 2007. Impact of consumption of different levels of Bifidobacterium lactis HN019 on the intestinal microflora of elderly human subjects. J Nutr Health Aging, 11, 26.
  • Agrawal A, Houghton LA, Morris J, Reilly B, Guyonnet D, Goupil Feuillerat N, Whorwell PJ, 2008. Clinical trial: the effects of a fermented milk product containing Bifidobacterium lactis DN‐173 010 on abdominal distension and gastrointestinal transit in irritable bowel syndrome with constipation. Aliment Pharm Ther, 29, 104-114.
  • Akçil E, Denek N, 2013. Farklı seviyelerde okaliptus (Eucalyptus camaldulensis) yaprağının bazı kaba yemlerin in vitro metan gazı üretimi üzerine etkisinin araştırılması. Harran Univ Vet Fak Derg, 2, 75-81.
  • Al-Masri MR, 2003. An in vitro evaluation of some unconventional ruminant feeds in terms of the organic matter digestibility, energy and microbial biomass. Trop Anim Health Pro, 35, 155-167.
  • Anonim, 2003. Regulation (EC) No. 1831/2003 of the European Parliament and the Council of 22 September 2003 on Additives for Use in Animal Nutrition. OJEU L268/36.
  • AOAC, 2005. Association of Official Analytical Chemistry Official Methods of Analysis of AOAC. International, 18th ed. Association of Official Analytical Chemists, Washington DC, USA.
  • Cheeke PR, 1998. Saponins: surprising benefits of desert plants. The Linus Pauling Institute Newsletter, 4-5.
  • Chiang BL, Sheih YH, Wang LH, Liao CK, Gill HS, 2000. Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): optimization and definition of cellular immune responses. Eur J Clin Nutr, 54, 849-855.
  • Dohme F, Machmüller A, Wasserfallen A, Kreuzer M, 2000. Comparative efficiency of various fats rich in medium-chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC. Can J Anim Sci, 80, 473-484.
  • Ece Z, Avcı M, 2018. Yonca Kuru Otu ve Süt Sığırı Rasyonuna Zeolit ve Meşe Palamudu İlavesinin İn Vitro Organik Madde Sindirimi ve Metan Oluşumu Üzerine Etkisi Harran Univ Vet Fak Derg, 7, 67-73.
  • Getachew G, DePeters EJ, Robinson PH, Fadel JG, 2005. Use of an in vitro rumen gas production technique to evaluate microbial fermentation of ruminant feeds and its impact on fermentation products. Anim Feed Sci Techn, 123, 547-559.
  • Gopal PK, Prasad J, Smart J, Gill HS, 2001. In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Int J Food Microbiol, 67, 207-216
  • Grainger C, Beauchemin KA, 2011. Can enteric methane emissions from ruminants be lowered without lowering their production? Anim Feed Science Techn, 166, 308-320.
  • Horvath A, Dziechciarz P, Szajewska H, 2011. Meta‐analysis: Lactobacillus rhamnosus GG for abdominal pain‐related functional gastrointestinal disorders in childhood. Aliment Pharm Ther, 33, 1302-1310.
  • Johnson KA, Johnson DE, 1995. Methane emissions from cattle. J Anim Sci, 73, 2483-2492
  • Kamra DN, Agarwal N, Chaudhary LC, 2006. Inhibition of ruminal methanogenesis by tropical plants containing secondary compounds. Int Congress Series, 1293, 156-163.
  • Lesniewska V, Rowland I, Cani PD, Neyrinck AM, Delzenne NM, Naughton PJ, 2006. Effect on components of the intestinal microflora and plasma neuropeptide levels of feeding Lactobacillus delbrueckii, Bifidobacterium lactis, and inulin to adult and elderly rats. Appl Environ Microb, 72, 6533-6538.
  • Lila ZA, Mohammed N, Yasui T, Kurokawa Y, Kanda S, Itabashi H, 2004. Effects of a twin strain of live cells on mixed ruminal microorganism fermentation in vitro. J Anim Sci, 82, 1847-1854.
  • Lynch HA, Martin SA, 2002. Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. J Dairy Sci, 85, 2603-2608.
  • Markham R, 1942. Distillation apparatus suitable for microkjeldahl analysis. Biochem J, 36, 790.
  • Mathieu F, Jouany JP, Senaud J, Bohatier J, Bertin G, Mercier M 1996. The effect of Saccharomyces cerevisiae and Aspergillus oryzae on fermentations in the rumen of faunated and defaunated sheep; protozoal and probiotic interactions. Reprod Nutr Dev, 36, 271-287.
  • McGinn SM, Beauchemin KA, Coates T, Colombatto D, 2004. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J Anim Sci, 82, 3346-3356.
  • Menke KH, Steingass H, 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Dev, 28, 7-55.
  • Mutsvangwa T, Edwards IE, Topps JH, Paterson GFM, 1992. The effect of dietary inclusion of yeast culture (Yea-Sacc) on patterns of rumen fermentation, food intake and growth of intensively fed bulls. Anim Prod, 55, 35-40.
  • Newbold CJ, Wallace RJ, Chen XB, McIntosh FM, 1995. Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep. J Anim Sci, 73, 1811-1818.
  • Newbold CJ, Rode LM, 2006. Dietary additives to control methanogenesis in the rumen. Int Congr Ser, 1293, 138-147.
  • Oeztuerk, H, Schroeder B, Beyerbach M, Breves G, 2005. Influence of living and autoclaved yeasts of Saccharomyces boulardii on in vitro ruminal microbial metabolism. J Dairy Sci, 88, 2594-2600.
  • O’Mara FP, 2011. The significance of livestock as a contributor to global greenhouse gas emissions today and in the near future. Anim Feed Sci Techn, 166, 7-15.
  • Opsi F, Fortina R, Tassone S, Bodas R, López S, 2012. Effects of inactivated and live cells of Saccharomyces cerevisiae on in vitro ruminal fermentation of diets with different forage: concentrate ratio. J Agr Sci, 150, 271-283.
  • Oruç A, Avcı M, 2018: Bazı Kaba Yemlere Farklı Seviyelerde İlave Edilen Söğüt Ağacı (Salix Alba) Yaprağının İn Vitro Sindirim ve Metan Oluşumu Üzerine Etkisi. Harran Univ Vet Fak Derg, 7, 60-66.
  • Pinos-Rodríguez JM, Robinson PH, Ortega ME, Berry SL, Mendoza G, Bárcena R, 2008. Performance and rumen fermentation of dairy calves supplemented with Saccharomyces cerevisiae1077 or Saccharomyces boulardii1079. Anim Feed Sci Techn, 140, 223-232.
  • Raju CS, Ward AJ, Nielsen L, Møller HB,2011. Comparison of near infra-red spectroscopy, neutral detergent fibre assay and in-vitro organic matter digestibility assay for rapid determination of the biochemical methane potential of meadow grasses. Bioresource Technol, 102, 7835-7839.
  • Santoso B, Kume S, Nonaka K, Kimura K, Mizukoshi H, Gamo Y, Takahashi J, 2003. Methane emission, nutrient digestibility, energy metabolism and blood metabolites in dairy cows fed silages with and without galacto-oligosaccharides supplementation. Asian Austral J Anim Sci, 16, 534-540.
  • SPSS, 1991, Inc. Statistical package for the social sciences (SPSS/PC+). Chicago, IL, USA.
  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, De Haan C, 2006. Livestock's Long Shadow: Environmental Issues and Options. FAO, Food Agriculture Organization of the United Nations. http://www.afpfasso.org/afpf/vie/vie/images/FAOLivestock- Environment.pdf, (Erisim tarihi: 03.01.2007).
  • Tabe ES, Oloya J, Doetkott DK, Bauer ML, Gibbs PS, Khaitsa ML, 2008. Comparative effect of direct-fed microbials on fecal shedding of Escherichia coli O157:H7 and Salmonella in naturally infected feedlot cattle. J Food Protect, 71, 539-544.
  • Tan HY, Sieo CC, Abdullah N, Liang JB, Huang XD, Ho YW, 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Animal feed science and technology, 169, 185-193.
  • Teferedegne B, 2000. New perspectives on the use of tropical plants to improve ruminant nutrition. Proc Nutr Soc, 59, 209–214.
  • Van Soest PV, Robertson JB, Lewis BA, 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 74, 3583-3597.
  • Younts-Dahl, SM, Osborn GD, Galyean ML, Rivera JD, Loneragan GH, Brashears MM, 2005. Reduction of Escherichia coli O157 in finishing beef cattle by various doses of Lactobacillus acidophilus in direct-fed microbials. J Food Protect, 68, 6-10.

Effects of Probiotics Added to Some Roughages on in vitro Organic Matter Digestibility and Methane Production

Year 2019, , 93 - 98, 01.07.2019
https://doi.org/10.31196/huvfd.592585

Abstract

The objective of this study
was to determine the effects of probiotics (Lactobacillus
rhamnosus, Bifidobacterium lactis
and Saccharomyces
boulardii
) added to some roughages on in vitro methane production. Ground
roughage samples added with 0.1% of probiotics were incubated in special glass
tubes containing rumen fluid at 39 °C for 24 h. Percentages of methane (CH4)
and carbon dioxide (CO2) in total gas produced were measured by
using a methane measuring device. Additionally, in vitro organic matter
digestibility (IVOMD), amount of ammonia nitrogen (NH3-N), metabolic
energy (ME) and pH values were also determined. Addition of B. lactis to wheat straw decreased CH4
and CO2 amount and IVOMD while S.
boulardii
increased the percentage of CH4 and decreased the
percentage of CO2. Among probiotics added to grass hay L. rhamnosus
increased total gas volume, CH4 volume and IVOMD while it did not
affect the percentage of CH4. It was detected that addition of the
probiotics to corn silage and alfa alfa roughage did not affect methane and
carbondioxyde levels. As a result, except for B. lactis, added to wheat straw, probiotic microorganisms used in
the present study increased or did not affect in vitro methane production. The
results suggested that decreased methane production in wheat straw added with B. lactis and increased methane
production in grass hay added with L. rhamnosus
resulted from the affected IVOMD of these roughages due to addition of these
probiotics and therefore use of the probiotics in this study was not effective
for reducing ruminal methane production.

References

  • Ahmed M, Prasad J, Gill H, Stevenson L, Gopal P, 2007. Impact of consumption of different levels of Bifidobacterium lactis HN019 on the intestinal microflora of elderly human subjects. J Nutr Health Aging, 11, 26.
  • Agrawal A, Houghton LA, Morris J, Reilly B, Guyonnet D, Goupil Feuillerat N, Whorwell PJ, 2008. Clinical trial: the effects of a fermented milk product containing Bifidobacterium lactis DN‐173 010 on abdominal distension and gastrointestinal transit in irritable bowel syndrome with constipation. Aliment Pharm Ther, 29, 104-114.
  • Akçil E, Denek N, 2013. Farklı seviyelerde okaliptus (Eucalyptus camaldulensis) yaprağının bazı kaba yemlerin in vitro metan gazı üretimi üzerine etkisinin araştırılması. Harran Univ Vet Fak Derg, 2, 75-81.
  • Al-Masri MR, 2003. An in vitro evaluation of some unconventional ruminant feeds in terms of the organic matter digestibility, energy and microbial biomass. Trop Anim Health Pro, 35, 155-167.
  • Anonim, 2003. Regulation (EC) No. 1831/2003 of the European Parliament and the Council of 22 September 2003 on Additives for Use in Animal Nutrition. OJEU L268/36.
  • AOAC, 2005. Association of Official Analytical Chemistry Official Methods of Analysis of AOAC. International, 18th ed. Association of Official Analytical Chemists, Washington DC, USA.
  • Cheeke PR, 1998. Saponins: surprising benefits of desert plants. The Linus Pauling Institute Newsletter, 4-5.
  • Chiang BL, Sheih YH, Wang LH, Liao CK, Gill HS, 2000. Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): optimization and definition of cellular immune responses. Eur J Clin Nutr, 54, 849-855.
  • Dohme F, Machmüller A, Wasserfallen A, Kreuzer M, 2000. Comparative efficiency of various fats rich in medium-chain fatty acids to suppress ruminal methanogenesis as measured with RUSITEC. Can J Anim Sci, 80, 473-484.
  • Ece Z, Avcı M, 2018. Yonca Kuru Otu ve Süt Sığırı Rasyonuna Zeolit ve Meşe Palamudu İlavesinin İn Vitro Organik Madde Sindirimi ve Metan Oluşumu Üzerine Etkisi Harran Univ Vet Fak Derg, 7, 67-73.
  • Getachew G, DePeters EJ, Robinson PH, Fadel JG, 2005. Use of an in vitro rumen gas production technique to evaluate microbial fermentation of ruminant feeds and its impact on fermentation products. Anim Feed Sci Techn, 123, 547-559.
  • Gopal PK, Prasad J, Smart J, Gill HS, 2001. In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Int J Food Microbiol, 67, 207-216
  • Grainger C, Beauchemin KA, 2011. Can enteric methane emissions from ruminants be lowered without lowering their production? Anim Feed Science Techn, 166, 308-320.
  • Horvath A, Dziechciarz P, Szajewska H, 2011. Meta‐analysis: Lactobacillus rhamnosus GG for abdominal pain‐related functional gastrointestinal disorders in childhood. Aliment Pharm Ther, 33, 1302-1310.
  • Johnson KA, Johnson DE, 1995. Methane emissions from cattle. J Anim Sci, 73, 2483-2492
  • Kamra DN, Agarwal N, Chaudhary LC, 2006. Inhibition of ruminal methanogenesis by tropical plants containing secondary compounds. Int Congress Series, 1293, 156-163.
  • Lesniewska V, Rowland I, Cani PD, Neyrinck AM, Delzenne NM, Naughton PJ, 2006. Effect on components of the intestinal microflora and plasma neuropeptide levels of feeding Lactobacillus delbrueckii, Bifidobacterium lactis, and inulin to adult and elderly rats. Appl Environ Microb, 72, 6533-6538.
  • Lila ZA, Mohammed N, Yasui T, Kurokawa Y, Kanda S, Itabashi H, 2004. Effects of a twin strain of live cells on mixed ruminal microorganism fermentation in vitro. J Anim Sci, 82, 1847-1854.
  • Lynch HA, Martin SA, 2002. Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. J Dairy Sci, 85, 2603-2608.
  • Markham R, 1942. Distillation apparatus suitable for microkjeldahl analysis. Biochem J, 36, 790.
  • Mathieu F, Jouany JP, Senaud J, Bohatier J, Bertin G, Mercier M 1996. The effect of Saccharomyces cerevisiae and Aspergillus oryzae on fermentations in the rumen of faunated and defaunated sheep; protozoal and probiotic interactions. Reprod Nutr Dev, 36, 271-287.
  • McGinn SM, Beauchemin KA, Coates T, Colombatto D, 2004. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J Anim Sci, 82, 3346-3356.
  • Menke KH, Steingass H, 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Dev, 28, 7-55.
  • Mutsvangwa T, Edwards IE, Topps JH, Paterson GFM, 1992. The effect of dietary inclusion of yeast culture (Yea-Sacc) on patterns of rumen fermentation, food intake and growth of intensively fed bulls. Anim Prod, 55, 35-40.
  • Newbold CJ, Wallace RJ, Chen XB, McIntosh FM, 1995. Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep. J Anim Sci, 73, 1811-1818.
  • Newbold CJ, Rode LM, 2006. Dietary additives to control methanogenesis in the rumen. Int Congr Ser, 1293, 138-147.
  • Oeztuerk, H, Schroeder B, Beyerbach M, Breves G, 2005. Influence of living and autoclaved yeasts of Saccharomyces boulardii on in vitro ruminal microbial metabolism. J Dairy Sci, 88, 2594-2600.
  • O’Mara FP, 2011. The significance of livestock as a contributor to global greenhouse gas emissions today and in the near future. Anim Feed Sci Techn, 166, 7-15.
  • Opsi F, Fortina R, Tassone S, Bodas R, López S, 2012. Effects of inactivated and live cells of Saccharomyces cerevisiae on in vitro ruminal fermentation of diets with different forage: concentrate ratio. J Agr Sci, 150, 271-283.
  • Oruç A, Avcı M, 2018: Bazı Kaba Yemlere Farklı Seviyelerde İlave Edilen Söğüt Ağacı (Salix Alba) Yaprağının İn Vitro Sindirim ve Metan Oluşumu Üzerine Etkisi. Harran Univ Vet Fak Derg, 7, 60-66.
  • Pinos-Rodríguez JM, Robinson PH, Ortega ME, Berry SL, Mendoza G, Bárcena R, 2008. Performance and rumen fermentation of dairy calves supplemented with Saccharomyces cerevisiae1077 or Saccharomyces boulardii1079. Anim Feed Sci Techn, 140, 223-232.
  • Raju CS, Ward AJ, Nielsen L, Møller HB,2011. Comparison of near infra-red spectroscopy, neutral detergent fibre assay and in-vitro organic matter digestibility assay for rapid determination of the biochemical methane potential of meadow grasses. Bioresource Technol, 102, 7835-7839.
  • Santoso B, Kume S, Nonaka K, Kimura K, Mizukoshi H, Gamo Y, Takahashi J, 2003. Methane emission, nutrient digestibility, energy metabolism and blood metabolites in dairy cows fed silages with and without galacto-oligosaccharides supplementation. Asian Austral J Anim Sci, 16, 534-540.
  • SPSS, 1991, Inc. Statistical package for the social sciences (SPSS/PC+). Chicago, IL, USA.
  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, De Haan C, 2006. Livestock's Long Shadow: Environmental Issues and Options. FAO, Food Agriculture Organization of the United Nations. http://www.afpfasso.org/afpf/vie/vie/images/FAOLivestock- Environment.pdf, (Erisim tarihi: 03.01.2007).
  • Tabe ES, Oloya J, Doetkott DK, Bauer ML, Gibbs PS, Khaitsa ML, 2008. Comparative effect of direct-fed microbials on fecal shedding of Escherichia coli O157:H7 and Salmonella in naturally infected feedlot cattle. J Food Protect, 71, 539-544.
  • Tan HY, Sieo CC, Abdullah N, Liang JB, Huang XD, Ho YW, 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Animal feed science and technology, 169, 185-193.
  • Teferedegne B, 2000. New perspectives on the use of tropical plants to improve ruminant nutrition. Proc Nutr Soc, 59, 209–214.
  • Van Soest PV, Robertson JB, Lewis BA, 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 74, 3583-3597.
  • Younts-Dahl, SM, Osborn GD, Galyean ML, Rivera JD, Loneragan GH, Brashears MM, 2005. Reduction of Escherichia coli O157 in finishing beef cattle by various doses of Lactobacillus acidophilus in direct-fed microbials. J Food Protect, 68, 6-10.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Surgery
Journal Section Research
Authors

Ali Güler This is me 0000-0002-2981-7992

Oktay Kaplan This is me 0000-0001-6143-8987

Faruk Bozkaya 0000-0001-6423-8067

Publication Date July 1, 2019
Submission Date March 14, 2019
Acceptance Date May 31, 2019
Published in Issue Year 2019

Cite

APA Güler, A., Kaplan, O., & Bozkaya, F. (2019). Bazı kaba yemlere ilave edilen probiyotiklerin in vitro organik madde sindirimi ve metan üretimi üzerine etkileri. Harran University Journal of the Faculty of Veterinary Medicine, 8(1), 93-98. https://doi.org/10.31196/huvfd.592585
AMA Güler A, Kaplan O, Bozkaya F. Bazı kaba yemlere ilave edilen probiyotiklerin in vitro organik madde sindirimi ve metan üretimi üzerine etkileri. Harran Univ Vet Fak Derg. July 2019;8(1):93-98. doi:10.31196/huvfd.592585
Chicago Güler, Ali, Oktay Kaplan, and Faruk Bozkaya. “Bazı Kaba Yemlere Ilave Edilen Probiyotiklerin in Vitro Organik Madde Sindirimi Ve Metan üretimi üzerine Etkileri”. Harran University Journal of the Faculty of Veterinary Medicine 8, no. 1 (July 2019): 93-98. https://doi.org/10.31196/huvfd.592585.
EndNote Güler A, Kaplan O, Bozkaya F (July 1, 2019) Bazı kaba yemlere ilave edilen probiyotiklerin in vitro organik madde sindirimi ve metan üretimi üzerine etkileri. Harran University Journal of the Faculty of Veterinary Medicine 8 1 93–98.
IEEE A. Güler, O. Kaplan, and F. Bozkaya, “Bazı kaba yemlere ilave edilen probiyotiklerin in vitro organik madde sindirimi ve metan üretimi üzerine etkileri”, Harran Univ Vet Fak Derg, vol. 8, no. 1, pp. 93–98, 2019, doi: 10.31196/huvfd.592585.
ISNAD Güler, Ali et al. “Bazı Kaba Yemlere Ilave Edilen Probiyotiklerin in Vitro Organik Madde Sindirimi Ve Metan üretimi üzerine Etkileri”. Harran University Journal of the Faculty of Veterinary Medicine 8/1 (July 2019), 93-98. https://doi.org/10.31196/huvfd.592585.
JAMA Güler A, Kaplan O, Bozkaya F. Bazı kaba yemlere ilave edilen probiyotiklerin in vitro organik madde sindirimi ve metan üretimi üzerine etkileri. Harran Univ Vet Fak Derg. 2019;8:93–98.
MLA Güler, Ali et al. “Bazı Kaba Yemlere Ilave Edilen Probiyotiklerin in Vitro Organik Madde Sindirimi Ve Metan üretimi üzerine Etkileri”. Harran University Journal of the Faculty of Veterinary Medicine, vol. 8, no. 1, 2019, pp. 93-98, doi:10.31196/huvfd.592585.
Vancouver Güler A, Kaplan O, Bozkaya F. Bazı kaba yemlere ilave edilen probiyotiklerin in vitro organik madde sindirimi ve metan üretimi üzerine etkileri. Harran Univ Vet Fak Derg. 2019;8(1):93-8.