Research Article
BibTex RIS Cite

The Effect of Swimming Training on Adrenomedullin mRNA Levels in the Aorta, Kidney, and Adrenal Gland of L‐NAME‐induced Hypertensive Rats

Year 2021, , 94 - 99, 12.12.2021
https://doi.org/10.31196/huvfd.899762

Abstract

Adrenomedullin, which is produced by the vascular endothelial and smooth muscle cells and cardiomyocytes, is considered to be a local factor controlling vascular tone, cardiac contractility, and renal sodium excretion. Hypertension is the most common cause of cardiovascular disorders and diseases. Exercise has beneficial effects on hypertension, but pathophysiological factors involved in exercise‐mediated amelioration of hypertension are yet to be elucidated. We hypothesized that adrenomedullin produced through exercise could play an essential role in the protection from hypertension. For this study rats were subjected to swimming training for six weeks (1‐h per day and five times each week). Meanwhile, hypertension was induced by the oral administration of L‐NAME (60 mg/kg). Here, we show that L‐NAME administration per se leads to a significant increase in mean arterial blood pressure. Notably, the 6‐week swimming exercise causes a protective effect from the development of hypertension. In addition, the rats rescued from hypertension have high mRNA levels of renal adrenomedullin while they have low levels of adrenomedullin mRNA in the aorta. The obtained data indicate that a 6‐week exercise intervention rescues rats from high blood pressure by leading to changes in adrenomedullin levels in the aorta and kidney. The increased expression of adrenomedullin in the aorta might have been a result that compensates for the hypertensive effect of L‐NAME. On the other hand, exercise probably exerts its protective effects on hypertension by increasing adrenomedullin in the kidney. A more extended exercise period may give more apparent results regarding the level of adrenomedullin in different organs.

Supporting Institution

Aydın Adnan Menderes University

Project Number

VTF-17023

Thanks

We thank Amanda Chilaka (Whitehead Institute, Boston, MA) for editing the manuscript.

References

  • 1. Abdel-Rahman RF, Hessin AF, Abdelbaset M, Ogaly HA, Abd-Elsalam RM, & Hassan SM, 2017: Antihypertensive Effects of Roselle-Olive Combination in L-NAME-Induced Hypertensive Rats. Oxidative medicine and cellular longevity, 2017, 9460653.
  • 2. Baylis C, Mitruka B, & Deng A, 1992: Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. The Journal of clinical investigation, 90(1), 278–281.
  • 3. Boutcher YN, & Boutcher SH, 2017: Exercise intensity and hypertension: what's new?. Journal of human hypertension, 31(3), 157–164.
  • 4. Bunbupha S, Prachaney P, Kukongviriyapan U, Kukongviriyapan V, Welbat JU, & Pakdeechote P, 2015: Asiatic acid alleviates cardiovascular remodelling in rats with L-NAME-induced hypertension. Clinical and experimental pharmacology & physiology, 42(11), 1189–1197.
  • 5. Cardoso AM, Abdalla FH, Bagatini MD, Martins CC, Fiorin F, Baldissarelli J, Costa P, Mello FF, Fiorenza AM, Serres JD, Gonçalves JF, Chaves H, Royes LF, Belló-Klein A, Morsch VM, & Schetinger MR, 2014: Swimming training prevents alterations in acetylcholinesterase and butyrylcholinesterase activities in hypertensive rats. American journal of hypertension, 27(4), 522–529.
  • 6. Cardoso AM, Martins CC, Fiorin F, Schmatz R, Abdalla FH, Gutierres J, Zanini D, Fiorenza AM, Stefanello N, Serres JD, Carvalho F, Castro VP, Mazzanti CM, Royes LF, Belló-Klein A, Goularte JF, Morsch VM, Bagatini MD, & Schetinger MR, 2013: Physical training prevents oxidative stress in L-NAME-induced hypertension rats. Cell biochemistry and function, 31(2), 136–151.
  • 7. Carlson DJ, Dieberg G, Hess NC, Millar PJ, & Smart NA, 2014: Isometric exercise training for blood pressure management: a systematic review and meta-analysis. Mayo Clinic proceedings, 89(3), 327–334.
  • 8. Cornacoff JB, Hebert LA, Sharma HM, Bay WH, & Young DC, 1985: Adverse effect of exercise on immune complex-mediated glomerulonephritis. Nephron, 40(3), 292–296.
  • 9. Cornelissen VA, & Smart NA, 2013: Exercise training for blood pressure: a systematic review and meta-analysis. Journal of the American Heart Association, 2(1), e004473.
  • 10. DeMers D, & Wachs D, 2020: Physiology, Mean Arterial Pressure. In StatPearls [Internet]. StatPearls Publishing, 1-8.
  • 11. Hansen AH, Nyberg M, Bangsbo J, Saltin B, & Hellsten Y, 2011: Exercise training alters the balance between vasoactive compounds in skeletal muscle of individuals with essential hypertension. Hypertension (Dallas, Tex.: 1979), 58(5), 943–949.
  • 12. Higashi Y, & Yoshizumi M, 2004: Exercise and endothelial function: role of endothelium-derived nitric oxide and oxidative stress in healthy subjects and hypertensive patients. Pharmacology & therapeutics, 102(1), 87–96.
  • 13. Humphrey R, & Bartels MN, 2001: Exercise, cardiovascular disease, and chronic heart failure. Archives of physical medicine and rehabilitation, 82(3 Suppl 1), S76–S81.
  • 14. Iemitsu M, Miyauchi T, Maeda S, Sakai S, Kobayashi T, Fujii N, Miyazaki H, Matsuda M, & Yamaguchi I, 2001: Physiological and pathological cardiac hypertrophy induce different molecular phenotypes in the rat. American journal of physiology. Regulatory, integrative and comparative physiology, 281(6), R2029–R2036.
  • 15. Ishimitsu T., Miyata A, Matsuoka H, Kangawa K, 1998: Transcriptional regulation of human adrenomedullin gene in vascular endothelial cells. Biochemical and biophysical research communications, 243(2), 463–470.
  • 16. Jin S, Teng X, Xiao L, Xue H, Guo Q, Duan X, Chen Y, & Wu Y, 2017: Hydrogen sulfide ameliorated L-NAME-induced hypertensive heart disease by the Akt/eNOS/NO pathway. Experimental biology and medicine (Maywood, N.J.), 242(18), 1831–1841.
  • 17. Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, & Eto T, 1993a: Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochemical and biophysical research communications, 192(2), 553–560.
  • 18. Kitamura K, Sakata J, Kangawa K, Kojima M, Matsuo H, & Eto T, 1993b: Cloning and characterization of cDNA encoding a precursor for human adrenomedullin. Biochemical and biophysical research communications, 194(2), 720–725.
  • 19. Kohno M, Kano H, Horio T, Yokokawa K, Yasunari K, & Takeda T, 1995: Inhibition of endothelin production by adrenomedullin in vascular smooth muscle cells. Hypertension (Dallas, Tex.: 1979), 25(6), 1185–1190.
  • 20. Kuru O, Sentürk UK, Gülkesen H, Demir N, & Gündüz F, 2005: Physical training increases renal injury in rats with chronic NOS inhibition. Renal failure, 27(4), 459–463.
  • 21. Kuru O, Sentürk UK, Koçer G, Ozdem S, Başkurt OK, Cetin A, Yeşilkaya A, & Gündüz F, 2009: Effect of exercise training on resistance arteries in rats with chronic NOS inhibition. Journal of applied physiology (Bethesda, Md.: 1985), 107(3), 896–902.
  • 22. Li L, Tang F, & O WS, 2010: Coexpression of adrenomedullin and its receptor component proteins in the reproductive system of the rat during gestation. Reproductive biology and endocrinology: RB&E, 8, 130.
  • 23. Livak KJ, & Schmittgen TD, 2001: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.), 25(4), 402–408.
  • 25. Moraes-Silva IC, Mostarda CT, Silva-Filho AC, Irigoyen MC, 2017: Hypertension and Exercise Training: Evidence from Clinical Studies. Advances in experimental medicine and biology, 1000, 65–84.
  • 26. Nagaya N, Satoh T, Nishikimi T, Uematsu M, Furuichi S, Sakamaki F, Oya H, Kyotani S, Nakanishi N, Goto Y, Masuda Y, Miyatake K, & Kangawa K, 2000: Hemodynamic, renal, and hormonal effects of adrenomedullin infusion in patients with congestive heart failure. Circulation, 101(5), 498–503.
  • 27. Nyberg M, Al-Khazraji BK, Mortensen SP, Jackson DN, Ellis CG, & Hellsten Y, 2013: Effect of extraluminal ATP application on vascular tone and blood flow in skeletal muscle: implications for exercise hyperemia. American journal of physiology. Regulatory, integrative and comparative physiology, 305(3), R281–R290.
  • 28. Nyberg M, Jensen LG, Thaning P, Hellsten Y, & Mortensen SP, 2012: Role of nitric oxide and prostanoids in the regulation of leg blood flow and blood pressure in humans with essential hypertension: effect of high-intensity aerobic training. The Journal of physiology, 590(6), 1481–1494.
  • 29. Pan C, Jiang W, Wu S, Zhao J, Pang YZ, Tang C, & Qi YF, 2006: Potentiated response to adrenomedullin in myocardia and aortas in spontaneously hypertensive rat. Basic research in cardiology, 101(3), 193–203.
  • 30. Peeri M, Habibian M, Azarbayjani MA, & Hedayati M, 2013: Protective effect of aerobic exercise against L-NAME-induced kidney damage in rats. Arhiv za higijenu rada i toksikologiju, 64(2), 43–49.
  • 31. Qi YF, Bu DF, Shi YR, Li JX, Pang YZ, & Tang CS, 2003: Levels of adrenomedullin and proadrenomedullin N-terminal 20 peptide in myocardium and aorta of spontaneously hypertensive rats and Wistar-Kyoto rats. Sheng li xue bao: [Acta physiologica Sinica], 55(3), 260–264.
  • 32. Raine AE, 1994: Hypertension and the kidney. British medical bulletin, 50(2), 322–341.
  • 33. Ribeiro MO, Antunes E, de Nucci G, Lovisolo SM, & Zatz R, 1992: Chronic inhibition of nitric oxide synthesis. A new model of arterial hypertension. Hypertension (Dallas, Tex.:1979), 20(3), 298–303.
  • 34. Rodrigues JA, Prímola-Gomes TN, Soares LL, Leal TF, Nóbrega C, Pedrosa DL, Rezende L, Oliveira EM, & Natali AJ, 2018: Physical Exercise and Regulation of Intracellular Calcium in Cardiomyocytes of Hypertensive Rats. Arquivos brasileiros de cardiologia, 111(2), 172–179.
  • 35. Roque FR, Briones AM, García-Redondo AB, Galán M, Martínez-Revelles S, Avendaño MS, Cachofeiro V, Fernandes T, Vassallo DV, Oliveira EM, & Salaices M, 2013: Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. British journal of pharmacology, 168(3), 686–703.
  • 36. Rueckert PA, Slane PR, Lillis DL, Hanson P, 1996: Hemodynamic patterns and duration of post-dynamic exercise hypotension in hypertensive humans. Medicine and science in sports and exercise, 28(1), 24–32.
  • 37. Saravanakumar M, & Raja B, 2011: Veratric acid, a phenolic acid attenuates blood pressure and oxidative stress in L-NAME induced hypertensive rats. European journal of pharmacology, 671(1-3), 87–94.
  • 38. Sarzani R, Spannella F, Giulietti F, Balietti P, Cocci G, & Bordicchia M, 2017: Cardiac Natriuretic Peptides, Hypertension and Cardiovascular Risk. High blood pressure & cardiovascular prevention: the official journal of the Italian Society of Hypertension, 24(2), 115–126.
  • 39. Satoh F, Takahashi K, Murakami O, Totsune K, Sone M, Ohneda M, Abe K, Miura Y, Hayashi Y, & Sasano H, 1995: Adrenomedullin in human brain, adrenal glands and tumor tissues of pheochromocytoma, ganglioneuroblastoma and neuroblastoma. The Journal of clinical endocrinology and metabolism, 80(5), 1750–1752.
  • 40. Shinoki N, Kawasaki T, Minamino N, Okahara K, Ogawa A, Ariyoshi H, Sakon M, Kambayashi J, Kangawa K, & Monden M, 1998: Shear stress down-regulates gene transcription and production of adrenomedullin in human aortic endothelial cells. Journal of cellular biochemistry, 71(1), 109–115.
  • 41. Souza MA, Oliveira MS, Furian AF, Rambo LM, Ribeiro LR, Lima FD, Dalla Corte LC, Silva LF, Retamoso LT, Dalla Corte CL, Puntel GO, de Avila DS, Soares FA, Fighera MR, de Mello CF, & Royes LF, 2009: Swimming training prevents pentylenetetrazol-induced inhibition of Na+, K+-ATPase activity, seizures, and oxidative stress. Epilepsia, 50(4), 811–823.
  • 42. Sugo S, Minamino N, Kangawa K, Miyamoto K, Kitamura K, Sakata J, Eto T, & Matsuo H, 1994a: Endothelial cells actively synthesize and secrete adrenomedullin. Biochemical and biophysical research communications, 201(3), 1160–1166.
  • 43. Sugo S, Minamino N, Shoji H, Kangawa K, Kitamura K, Eto T, & Matsuo H, 1994b: Production and secretion of adrenomedullin from vascular smooth muscle cells: augmented production by tumor necrosis factor-alpha. Biochemical and biophysical research communications, 203(1), 719–726.
  • 44. Sun HK, Lee YM, Han KH, Kim HS, Ahn SH, & Han SY, 2012: Phosphodiesterase inhibitor improves renal tubulointerstitial hypoxia of the diabetic rat kidney. The Korean journal of internal medicine, 27(2), 163–170.
  • 45. Voors AA, Kremer D, Geven C, Ter Maaten JM, Struck J, Bergmann A, Pickkers P, Metra M, Mebazaa A, Düngen HD, & Butler J, 2019: Adrenomedullin in heart failure: pathophysiology and therapeutic application. European journal of heart failure, 21(2), 163–171.
  • 46. Wong HK, Cheung TT, & Cheung BM, 2012: Adrenomedullin and cardiovascular diseases. JRSM cardiovascular disease, 1(5), cvd.2012.012003.
  • 47. Yamaguchi T, Baba K, Doi Y, Yano K, Kitamura K, & Eto T, 1996: Inhibition of aldosterone production by adrenomedullin, a hypotensive peptide, in the rat. Hypertension (Dallas, Tex.: 1979), 28(2), 308–314.

L‐NAME İndüksiyonu ile Oluşturulan Hipertansiyon Modelinde Yüzme Egzersizinin Aorta, Böbrek ve Adrenal Bez Adrenomedüllin mRNA Düzeylerine Etkisi

Year 2021, , 94 - 99, 12.12.2021
https://doi.org/10.31196/huvfd.899762

Abstract

Adrenomedullin, vasküler gerim, kardiyak kontraktilite ve renal sodyum atılımında rolü olduğu ileri sürülen, vasküler endotelyal ve düz kas hücreleri ile kardiyomiyositlerden eksprese olan bir hormondur. Hipertansiyon, kardiyovasküler hastalıkların en yaygın nedenidir. Egzersizin hipertansiyon üzerinde yararlı etkileri bulunmaktadır ancak egzersiz‐aracılı düzelmeyi sağlayan halen daha açıklanmamış patofizyolojik mekanizmalar da bulunmaktadır. Bu çalışmada, egzersizin hipertansiyon üzerindeki etkisinde adrenomedullinin aracılık ettiği düşünülmektedir. Bu amaçla sıçanlara 6 hafta boyunca yüzme egzersizi (haftada 5 gün, 1 saat süreyle) uygulandı. Hipertansiyon, L‐NAME’in oral yolla (60 mg/kg) verilmesiyle indüklendi. L‐NAME uygulaması hipertansif grupta ortalama kan basıncını belirgin olarak artırdı. Ayrıca, egzersiz L‐NAME indüksiyonu yapılan sıçanlarda renal adrenomedullin mRNA düzeyinde artışa neden olarak koruma sağlarken, aortada adrenomedullin mRNA ekspresyonunu düşürdü. Elde edilen bu veriler 6‐haftalık yüzme egzersizin aorta ve böbrekte adrenomedullin ekspresyonunu değiştirerek hipertansiyona karşı koruma sağladığına işaret etmektedir. Aortadaki adrenomeduülin artışının hipertansiyonu kompanze etmek için artmış olabileceği düşünülmektedir. Bunun yanında, yüzme egzersizi muhtemelen böbrek adrenomedüllin düzeyini artırarak hipertansiyon üzerindeki koruyucu etkisini göstermektedir. Daha uzun bir egzersiz süresi, farklı organlardaki adrenomedüllin düzeyi hakkında daha net sonuçlar verebilir.

Project Number

VTF-17023

References

  • 1. Abdel-Rahman RF, Hessin AF, Abdelbaset M, Ogaly HA, Abd-Elsalam RM, & Hassan SM, 2017: Antihypertensive Effects of Roselle-Olive Combination in L-NAME-Induced Hypertensive Rats. Oxidative medicine and cellular longevity, 2017, 9460653.
  • 2. Baylis C, Mitruka B, & Deng A, 1992: Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. The Journal of clinical investigation, 90(1), 278–281.
  • 3. Boutcher YN, & Boutcher SH, 2017: Exercise intensity and hypertension: what's new?. Journal of human hypertension, 31(3), 157–164.
  • 4. Bunbupha S, Prachaney P, Kukongviriyapan U, Kukongviriyapan V, Welbat JU, & Pakdeechote P, 2015: Asiatic acid alleviates cardiovascular remodelling in rats with L-NAME-induced hypertension. Clinical and experimental pharmacology & physiology, 42(11), 1189–1197.
  • 5. Cardoso AM, Abdalla FH, Bagatini MD, Martins CC, Fiorin F, Baldissarelli J, Costa P, Mello FF, Fiorenza AM, Serres JD, Gonçalves JF, Chaves H, Royes LF, Belló-Klein A, Morsch VM, & Schetinger MR, 2014: Swimming training prevents alterations in acetylcholinesterase and butyrylcholinesterase activities in hypertensive rats. American journal of hypertension, 27(4), 522–529.
  • 6. Cardoso AM, Martins CC, Fiorin F, Schmatz R, Abdalla FH, Gutierres J, Zanini D, Fiorenza AM, Stefanello N, Serres JD, Carvalho F, Castro VP, Mazzanti CM, Royes LF, Belló-Klein A, Goularte JF, Morsch VM, Bagatini MD, & Schetinger MR, 2013: Physical training prevents oxidative stress in L-NAME-induced hypertension rats. Cell biochemistry and function, 31(2), 136–151.
  • 7. Carlson DJ, Dieberg G, Hess NC, Millar PJ, & Smart NA, 2014: Isometric exercise training for blood pressure management: a systematic review and meta-analysis. Mayo Clinic proceedings, 89(3), 327–334.
  • 8. Cornacoff JB, Hebert LA, Sharma HM, Bay WH, & Young DC, 1985: Adverse effect of exercise on immune complex-mediated glomerulonephritis. Nephron, 40(3), 292–296.
  • 9. Cornelissen VA, & Smart NA, 2013: Exercise training for blood pressure: a systematic review and meta-analysis. Journal of the American Heart Association, 2(1), e004473.
  • 10. DeMers D, & Wachs D, 2020: Physiology, Mean Arterial Pressure. In StatPearls [Internet]. StatPearls Publishing, 1-8.
  • 11. Hansen AH, Nyberg M, Bangsbo J, Saltin B, & Hellsten Y, 2011: Exercise training alters the balance between vasoactive compounds in skeletal muscle of individuals with essential hypertension. Hypertension (Dallas, Tex.: 1979), 58(5), 943–949.
  • 12. Higashi Y, & Yoshizumi M, 2004: Exercise and endothelial function: role of endothelium-derived nitric oxide and oxidative stress in healthy subjects and hypertensive patients. Pharmacology & therapeutics, 102(1), 87–96.
  • 13. Humphrey R, & Bartels MN, 2001: Exercise, cardiovascular disease, and chronic heart failure. Archives of physical medicine and rehabilitation, 82(3 Suppl 1), S76–S81.
  • 14. Iemitsu M, Miyauchi T, Maeda S, Sakai S, Kobayashi T, Fujii N, Miyazaki H, Matsuda M, & Yamaguchi I, 2001: Physiological and pathological cardiac hypertrophy induce different molecular phenotypes in the rat. American journal of physiology. Regulatory, integrative and comparative physiology, 281(6), R2029–R2036.
  • 15. Ishimitsu T., Miyata A, Matsuoka H, Kangawa K, 1998: Transcriptional regulation of human adrenomedullin gene in vascular endothelial cells. Biochemical and biophysical research communications, 243(2), 463–470.
  • 16. Jin S, Teng X, Xiao L, Xue H, Guo Q, Duan X, Chen Y, & Wu Y, 2017: Hydrogen sulfide ameliorated L-NAME-induced hypertensive heart disease by the Akt/eNOS/NO pathway. Experimental biology and medicine (Maywood, N.J.), 242(18), 1831–1841.
  • 17. Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, & Eto T, 1993a: Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochemical and biophysical research communications, 192(2), 553–560.
  • 18. Kitamura K, Sakata J, Kangawa K, Kojima M, Matsuo H, & Eto T, 1993b: Cloning and characterization of cDNA encoding a precursor for human adrenomedullin. Biochemical and biophysical research communications, 194(2), 720–725.
  • 19. Kohno M, Kano H, Horio T, Yokokawa K, Yasunari K, & Takeda T, 1995: Inhibition of endothelin production by adrenomedullin in vascular smooth muscle cells. Hypertension (Dallas, Tex.: 1979), 25(6), 1185–1190.
  • 20. Kuru O, Sentürk UK, Gülkesen H, Demir N, & Gündüz F, 2005: Physical training increases renal injury in rats with chronic NOS inhibition. Renal failure, 27(4), 459–463.
  • 21. Kuru O, Sentürk UK, Koçer G, Ozdem S, Başkurt OK, Cetin A, Yeşilkaya A, & Gündüz F, 2009: Effect of exercise training on resistance arteries in rats with chronic NOS inhibition. Journal of applied physiology (Bethesda, Md.: 1985), 107(3), 896–902.
  • 22. Li L, Tang F, & O WS, 2010: Coexpression of adrenomedullin and its receptor component proteins in the reproductive system of the rat during gestation. Reproductive biology and endocrinology: RB&E, 8, 130.
  • 23. Livak KJ, & Schmittgen TD, 2001: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.), 25(4), 402–408.
  • 25. Moraes-Silva IC, Mostarda CT, Silva-Filho AC, Irigoyen MC, 2017: Hypertension and Exercise Training: Evidence from Clinical Studies. Advances in experimental medicine and biology, 1000, 65–84.
  • 26. Nagaya N, Satoh T, Nishikimi T, Uematsu M, Furuichi S, Sakamaki F, Oya H, Kyotani S, Nakanishi N, Goto Y, Masuda Y, Miyatake K, & Kangawa K, 2000: Hemodynamic, renal, and hormonal effects of adrenomedullin infusion in patients with congestive heart failure. Circulation, 101(5), 498–503.
  • 27. Nyberg M, Al-Khazraji BK, Mortensen SP, Jackson DN, Ellis CG, & Hellsten Y, 2013: Effect of extraluminal ATP application on vascular tone and blood flow in skeletal muscle: implications for exercise hyperemia. American journal of physiology. Regulatory, integrative and comparative physiology, 305(3), R281–R290.
  • 28. Nyberg M, Jensen LG, Thaning P, Hellsten Y, & Mortensen SP, 2012: Role of nitric oxide and prostanoids in the regulation of leg blood flow and blood pressure in humans with essential hypertension: effect of high-intensity aerobic training. The Journal of physiology, 590(6), 1481–1494.
  • 29. Pan C, Jiang W, Wu S, Zhao J, Pang YZ, Tang C, & Qi YF, 2006: Potentiated response to adrenomedullin in myocardia and aortas in spontaneously hypertensive rat. Basic research in cardiology, 101(3), 193–203.
  • 30. Peeri M, Habibian M, Azarbayjani MA, & Hedayati M, 2013: Protective effect of aerobic exercise against L-NAME-induced kidney damage in rats. Arhiv za higijenu rada i toksikologiju, 64(2), 43–49.
  • 31. Qi YF, Bu DF, Shi YR, Li JX, Pang YZ, & Tang CS, 2003: Levels of adrenomedullin and proadrenomedullin N-terminal 20 peptide in myocardium and aorta of spontaneously hypertensive rats and Wistar-Kyoto rats. Sheng li xue bao: [Acta physiologica Sinica], 55(3), 260–264.
  • 32. Raine AE, 1994: Hypertension and the kidney. British medical bulletin, 50(2), 322–341.
  • 33. Ribeiro MO, Antunes E, de Nucci G, Lovisolo SM, & Zatz R, 1992: Chronic inhibition of nitric oxide synthesis. A new model of arterial hypertension. Hypertension (Dallas, Tex.:1979), 20(3), 298–303.
  • 34. Rodrigues JA, Prímola-Gomes TN, Soares LL, Leal TF, Nóbrega C, Pedrosa DL, Rezende L, Oliveira EM, & Natali AJ, 2018: Physical Exercise and Regulation of Intracellular Calcium in Cardiomyocytes of Hypertensive Rats. Arquivos brasileiros de cardiologia, 111(2), 172–179.
  • 35. Roque FR, Briones AM, García-Redondo AB, Galán M, Martínez-Revelles S, Avendaño MS, Cachofeiro V, Fernandes T, Vassallo DV, Oliveira EM, & Salaices M, 2013: Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. British journal of pharmacology, 168(3), 686–703.
  • 36. Rueckert PA, Slane PR, Lillis DL, Hanson P, 1996: Hemodynamic patterns and duration of post-dynamic exercise hypotension in hypertensive humans. Medicine and science in sports and exercise, 28(1), 24–32.
  • 37. Saravanakumar M, & Raja B, 2011: Veratric acid, a phenolic acid attenuates blood pressure and oxidative stress in L-NAME induced hypertensive rats. European journal of pharmacology, 671(1-3), 87–94.
  • 38. Sarzani R, Spannella F, Giulietti F, Balietti P, Cocci G, & Bordicchia M, 2017: Cardiac Natriuretic Peptides, Hypertension and Cardiovascular Risk. High blood pressure & cardiovascular prevention: the official journal of the Italian Society of Hypertension, 24(2), 115–126.
  • 39. Satoh F, Takahashi K, Murakami O, Totsune K, Sone M, Ohneda M, Abe K, Miura Y, Hayashi Y, & Sasano H, 1995: Adrenomedullin in human brain, adrenal glands and tumor tissues of pheochromocytoma, ganglioneuroblastoma and neuroblastoma. The Journal of clinical endocrinology and metabolism, 80(5), 1750–1752.
  • 40. Shinoki N, Kawasaki T, Minamino N, Okahara K, Ogawa A, Ariyoshi H, Sakon M, Kambayashi J, Kangawa K, & Monden M, 1998: Shear stress down-regulates gene transcription and production of adrenomedullin in human aortic endothelial cells. Journal of cellular biochemistry, 71(1), 109–115.
  • 41. Souza MA, Oliveira MS, Furian AF, Rambo LM, Ribeiro LR, Lima FD, Dalla Corte LC, Silva LF, Retamoso LT, Dalla Corte CL, Puntel GO, de Avila DS, Soares FA, Fighera MR, de Mello CF, & Royes LF, 2009: Swimming training prevents pentylenetetrazol-induced inhibition of Na+, K+-ATPase activity, seizures, and oxidative stress. Epilepsia, 50(4), 811–823.
  • 42. Sugo S, Minamino N, Kangawa K, Miyamoto K, Kitamura K, Sakata J, Eto T, & Matsuo H, 1994a: Endothelial cells actively synthesize and secrete adrenomedullin. Biochemical and biophysical research communications, 201(3), 1160–1166.
  • 43. Sugo S, Minamino N, Shoji H, Kangawa K, Kitamura K, Eto T, & Matsuo H, 1994b: Production and secretion of adrenomedullin from vascular smooth muscle cells: augmented production by tumor necrosis factor-alpha. Biochemical and biophysical research communications, 203(1), 719–726.
  • 44. Sun HK, Lee YM, Han KH, Kim HS, Ahn SH, & Han SY, 2012: Phosphodiesterase inhibitor improves renal tubulointerstitial hypoxia of the diabetic rat kidney. The Korean journal of internal medicine, 27(2), 163–170.
  • 45. Voors AA, Kremer D, Geven C, Ter Maaten JM, Struck J, Bergmann A, Pickkers P, Metra M, Mebazaa A, Düngen HD, & Butler J, 2019: Adrenomedullin in heart failure: pathophysiology and therapeutic application. European journal of heart failure, 21(2), 163–171.
  • 46. Wong HK, Cheung TT, & Cheung BM, 2012: Adrenomedullin and cardiovascular diseases. JRSM cardiovascular disease, 1(5), cvd.2012.012003.
  • 47. Yamaguchi T, Baba K, Doi Y, Yano K, Kitamura K, & Eto T, 1996: Inhibition of aldosterone production by adrenomedullin, a hypotensive peptide, in the rat. Hypertension (Dallas, Tex.: 1979), 28(2), 308–314.
There are 46 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Research
Authors

Ece Koç Yıldırım 0000-0002-3208-6772

Esra Örenlili Yaylagül 0000-0002-5206-1185

Mehmet Kaya 0000-0003-2377-4474

Muharrem Balkaya 0000-0001-6819-9966

Celal Ülger 0000-0002-8051-3003

Ferda Belge 0000-0002-7577-7354

Hümeyra Ünsal 0000-0001-8990-4556

Cengiz Ünsal 0000-0001-7584-0571

Mehmet Ekici 0000-0002-2163-6214

Zahide Dedeoğlu 0000-0003-3522-4103

İlkem Ceylan Candan 0000-0002-4788-8989

Aykut Göktürk Üner 0000-0002-9242-8279

Project Number VTF-17023
Publication Date December 12, 2021
Submission Date March 24, 2021
Acceptance Date October 15, 2021
Published in Issue Year 2021

Cite

APA Koç Yıldırım, E., Örenlili Yaylagül, E., Kaya, M., Balkaya, M., et al. (2021). The Effect of Swimming Training on Adrenomedullin mRNA Levels in the Aorta, Kidney, and Adrenal Gland of L‐NAME‐induced Hypertensive Rats. Harran Üniversitesi Veteriner Fakültesi Dergisi, 10(2), 94-99. https://doi.org/10.31196/huvfd.899762
AMA Koç Yıldırım E, Örenlili Yaylagül E, Kaya M, Balkaya M, Ülger C, Belge F, Ünsal H, Ünsal C, Ekici M, Dedeoğlu Z, Ceylan Candan İ, Üner AG. The Effect of Swimming Training on Adrenomedullin mRNA Levels in the Aorta, Kidney, and Adrenal Gland of L‐NAME‐induced Hypertensive Rats. Harran Univ Vet Fak Derg. December 2021;10(2):94-99. doi:10.31196/huvfd.899762
Chicago Koç Yıldırım, Ece, Esra Örenlili Yaylagül, Mehmet Kaya, Muharrem Balkaya, Celal Ülger, Ferda Belge, Hümeyra Ünsal, Cengiz Ünsal, Mehmet Ekici, Zahide Dedeoğlu, İlkem Ceylan Candan, and Aykut Göktürk Üner. “The Effect of Swimming Training on Adrenomedullin MRNA Levels in the Aorta, Kidney, and Adrenal Gland of L‐NAME‐induced Hypertensive Rats”. Harran Üniversitesi Veteriner Fakültesi Dergisi 10, no. 2 (December 2021): 94-99. https://doi.org/10.31196/huvfd.899762.
EndNote Koç Yıldırım E, Örenlili Yaylagül E, Kaya M, Balkaya M, Ülger C, Belge F, Ünsal H, Ünsal C, Ekici M, Dedeoğlu Z, Ceylan Candan İ, Üner AG (December 1, 2021) The Effect of Swimming Training on Adrenomedullin mRNA Levels in the Aorta, Kidney, and Adrenal Gland of L‐NAME‐induced Hypertensive Rats. Harran Üniversitesi Veteriner Fakültesi Dergisi 10 2 94–99.
IEEE E. Koç Yıldırım, “The Effect of Swimming Training on Adrenomedullin mRNA Levels in the Aorta, Kidney, and Adrenal Gland of L‐NAME‐induced Hypertensive Rats”, Harran Univ Vet Fak Derg, vol. 10, no. 2, pp. 94–99, 2021, doi: 10.31196/huvfd.899762.
ISNAD Koç Yıldırım, Ece et al. “The Effect of Swimming Training on Adrenomedullin MRNA Levels in the Aorta, Kidney, and Adrenal Gland of L‐NAME‐induced Hypertensive Rats”. Harran Üniversitesi Veteriner Fakültesi Dergisi 10/2 (December 2021), 94-99. https://doi.org/10.31196/huvfd.899762.
JAMA Koç Yıldırım E, Örenlili Yaylagül E, Kaya M, Balkaya M, Ülger C, Belge F, Ünsal H, Ünsal C, Ekici M, Dedeoğlu Z, Ceylan Candan İ, Üner AG. The Effect of Swimming Training on Adrenomedullin mRNA Levels in the Aorta, Kidney, and Adrenal Gland of L‐NAME‐induced Hypertensive Rats. Harran Univ Vet Fak Derg. 2021;10:94–99.
MLA Koç Yıldırım, Ece et al. “The Effect of Swimming Training on Adrenomedullin MRNA Levels in the Aorta, Kidney, and Adrenal Gland of L‐NAME‐induced Hypertensive Rats”. Harran Üniversitesi Veteriner Fakültesi Dergisi, vol. 10, no. 2, 2021, pp. 94-99, doi:10.31196/huvfd.899762.
Vancouver Koç Yıldırım E, Örenlili Yaylagül E, Kaya M, Balkaya M, Ülger C, Belge F, Ünsal H, Ünsal C, Ekici M, Dedeoğlu Z, Ceylan Candan İ, Üner AG. The Effect of Swimming Training on Adrenomedullin mRNA Levels in the Aorta, Kidney, and Adrenal Gland of L‐NAME‐induced Hypertensive Rats. Harran Univ Vet Fak Derg. 2021;10(2):94-9.